The time it takes for a pendulum to make one swing is almost exactly the same regardless if it swings thru any small angle. Once the angle starts getting large, like more then 10 deg, the difference in swing time becomes noticable. If you use a pendulum as a clock,so each second is one swing, then if you start the pendulum swinging at about 10 deg it will continue to be one second per swing even as it runs down to a smaller swing angle.
30 degrees or less.
259 degrees is 101 degrees less than a circle.
An acute angle is less than 90 degrees, a right angle is exactly 90 degrees, no more or no less, and an obtuse angle is more than 90 degrees but less than 180 degrees. Does that answer your question?
An angle that is less than 90 degrees is an acute angle.
Yes, 69 degrees is less than a right angle. A right angle measures exactly 90 degrees, so any angle less than 90 degrees, such as 69 degrees, is considered acute. In this case, 69 degrees is closer to 0 degrees (a straight angle) than it is to 90 degrees.
The motion of the simple pendulum will be in simple harmonic if it is in oscillation.
A string should be unstretchable in a pendulum to ensure that the length of the pendulum remains constant, which is crucial for maintaining the periodicity of its motion. If the string stretches, it would change the effective length of the pendulum and affect its period of oscillation.
A pendulum swings as far out as you care to set it going, irrespective of length.
Less than 190 degrees.
The pendulum swinging in water will come to a complete stop faster than the one swinging in air due to the increased resistance from the water. Water creates more drag force on the pendulum, which dampens its motion more quickly. The presence of water molecules interacting with the pendulum's movements increases the dissipation of energy, leading to a faster decrease in swinging time.
The frequency of a pendulum is not affected by its mass. The frequency is determined by the length of the pendulum and the acceleration due to gravity. A more massive pendulum will swing at the same frequency as a less massive one if they have the same length.
30 degrees or less.
It is -4 degrees.
A bar pendulum is better than a simple pendulum because it has a larger moment of inertia, making it less affected by external forces like air resistance or friction, leading to more accurate results. Additionally, the bar pendulum has a more linear relationship between its period of oscillation and the length of the pendulum, allowing for easier calculations and predictions.
Keeping the bob of a simple pendulum near the floor reduces the potential energy of the system, which in turn decreases the amplitude of the pendulum's swing. This can help prevent the pendulum from swinging too wildly and potentially causing damage or injury. Additionally, having the bob closer to the floor reduces the distance it needs to fall, which can minimize the impact force when the pendulum reaches its lowest point.
Yes. The period of the pendulum (the time it takes it swing back and forth once) depends on the length of the pendulum, and also on how strong gravity is. The moon is much smaller and less massive than the earth, and as a result, gravity is considerably weaker. This would make the period of a pendulum longer on the moon than the period of the same pendulum would be on earth.
If this is a homework assignment, please consider trying to answer it yourself first, otherwise the value of the reinforcement of the lesson offered by the assignment will be lost on you.The period of a pendulum increases as it length increases because the verticle distance the bob travels is less, and thus there is less potential energy available to accelerate the bob in its arc. Also, recall that in vector mechanics the horizontal force vector due to gravity is a function of the direction the object is constrained to follow, and if the pendulum is longer, that direction is more horizontal, giving the horizontal force vector less of an effect.