In the context of the rational numbers ( \mathbb{Q} ) with the standard topology induced by the real numbers ( \mathbb{R} ), a singleton set ( {q} ) (where ( q ) is a rational number) is not open because for any point ( q ) in ( \mathbb{Q} ), every open interval around ( q ) contains both rational and Irrational Numbers. Therefore, any interval ( (q - \epsilon, q + \epsilon) ) intersects with points outside the singleton set, meaning it cannot be entirely contained within ( {q} ). Thus, singleton sets do not satisfy the definition of an open set in ( \mathbb{Q} ).
Chat with our AI personalities
What are equal sets?? A set is a grouping of numbers. Set P = {1,4,9} if set Q is equal it must contain exactly the same numbers.
any interval subset of R is open and closed
Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r
Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q
q+8