Each stair is the same as the one next to it. An arithmetic sequence shows numbers with even spacing (such as 2,4,6 or 5,10,15)
A sequence where a particular number is added to or subtracted from any term of the sequence to obtain the next term in the sequence. It is often call arithmetic progression, and therefore often written as A.P. An example would be: 2, 4, 6, 8, 10, ... In this sequence 2 is added to each term to obtain the next term.
It is the sequence of first differences. If these are all the same (but not 0), then the original sequence is a linear arithmetic sequence. That is, a sequence whose nth term is of the form t(n) = an + b
It looks like the Fibonacci sequence grouped in two terms and up. The next should be 8132134.
You cant solve the next term (next number) in this sequence. You need more terms, because this is either a "quadratic sequence", or a "linear and quadratic sequence", and you need more terms than this to solve a "linear and quadratic sequence" and for this particular "quadratic sequence" you would need more terms to solve nth term, which would solve what the next number is. If this is homework, check with your teacher if he wrote the wrong sum.
1, -3, -7
The sequence 9, 9, 9, 9 is an arithmetic sequence with a common difference of 0. Therefore, the next three terms of the sequence are also 9, 9, and 9.
An arithmetic sequence is a line-up of numbers in which the DIFFERENCE between any two next-door neighbors is always the same.
Each stair is the same as the one next to it. An arithmetic sequence shows numbers with even spacing (such as 2,4,6 or 5,10,15)
In an arithmetic sequence the same number (positive or negative) is added to each term to get to the next term.In a geometric sequence the same number (positive or negative) is multiplied into each term to get to the next term.A geometric sequence uses multiplicative and divisive formulas while an arithmetic uses additive and subtractive formulas.
An arithmetic sequence in one in which consecutive terms differ by a fixed amount,or equivalently, the next term can found by adding a fixed amount to the previous term. Example of an arithmetic sequence: 2 7 12 17 22 ... Here the the fixed amount is 5. I suppose any other type of sequence could be called non arithmetic, but I have not heard that expression before. Another useful kind of sequence is called geometric which is analogous to arithmetic, but multiplication is used instead of addition, i.e. to get the next term, multiply the previous term by some fixed amount. Example: 2 6 18 54 162 ... Here the muliplier is 3.
The series appears to be an arithmetic series in which the n'th term is 1.5 + (n - 1)2.5. If so, the next two terms are 11.5 and 14.
This sequence is an arithmetic series that makes use of another series. This sequence advances by adding the series 4, 11, 21, 34, and 50 to the initial terms. This secondary series has a difference of 7, 10, 13 and 16 which advance by terms of 3. So the next three numbers in the primary sequence are 190, 281 and 397.
A sequence where a particular number is added to or subtracted from any term of the sequence to obtain the next term in the sequence. It is often call arithmetic progression, and therefore often written as A.P. An example would be: 2, 4, 6, 8, 10, ... In this sequence 2 is added to each term to obtain the next term.
-63 and -81
It is the sequence of first differences. If these are all the same (but not 0), then the original sequence is a linear arithmetic sequence. That is, a sequence whose nth term is of the form t(n) = an + b
Fibonacci sequence