8
CIVIC
12321, 54345, 10101, 42124, 81718 etc....
101
1, 5, 9, 13....
Some examples of palindromic DNA sequences are "GGTACC" (complementary sequence: "CCTAGG"), "ACGT" (complementary sequence: "TGCA"), and "AGCT" (complementary sequence: "TCGA"). These sequences read the same on both strands when read in the 5' to 3' direction.
The specific sequences found at the 3' and 5' ends of DNA molecules are known as the 3' end and 5' end, respectively. These sequences are important for DNA replication and transcription processes.
The sequences at the 3 and 5 ends of DNA are important in genetic processes because they determine the direction in which DNA is read and copied. The 3 end is where new DNA strands are added during replication, while the 5 end is where the reading and copying of DNA begins. These sequences help ensure accurate replication and transcription of genetic information.
A number is said to be palindromic when it remains the same when it is reversed. 5 reversed is 5 itself.
A restriction enzyme (also known as restriction endonuclease) is protein which cuts DNA up at specific sequences (called restriction sites) in a genome. For example, the commonly used restriction endonuclease EcoRI recognizes every DNA sequence GAATTC and cuts at the point between the guanine and the adenine in that sequence, forming blunt ends (or straight, even ends). Interestingly and coincidentially, the restriction site for most restriction enzymes are genetic palindromes (the sequence reads exactly the same backwards on the complementary strand). In the case of EcoRI, the two complementary DNA strands for the restriction site are:5'-- GAATTC --3'3'-- CTTAAG --5'After this DNA sequence is cut, it might look something like this:5'-- G AATTC --3'3'-- C TTAAG --5'
8
5
36663 and 26762.
CIVIC
101
12321, 54345, 10101, 42124, 81718 etc....
Palindromic (read the same forewards and back) Multiple of 5, ends in either 5 or zero must end in five (number cannot start w/ zero) therefore must begin with five 50005