-5.5
To find the midpoint of a segment with endpoints at (-15) and (55), you can use the midpoint formula: ((x_1 + x_2) / 2). Substituting the values, the midpoint is ((-15 + 55) / 2 = 40 / 2 = 20). Therefore, the midpoint of the segment is (20).
To calculate the y-coordinate of the midpoint of a vertical line segment with endpoints at (0, 0) and (0, 15), you can use the midpoint formula, which is given by ( \text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) ). Here, since both endpoints share the same x-coordinate (0), you only need to average the y-coordinates: ( \frac{0 + 15}{2} = 7.5 ). Thus, the y-coordinate of the midpoint is 7.5.
To calculate the midpoint of a vertical line segment with endpoints at (0, 0) and (0, 15), you can use the midpoint formula, which is given by ((x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)). In this case, (x_1) and (x_2) are both 0, while (y_1) is 0 and (y_2) is 15. Thus, the midpoint coordinates are ((0, \frac{0 + 15}{2}) = (0, 7.5)).
To calculate the y-coordinate of the midpoint of a vertical line segment with endpoints at (0, 0) and (0, 15), you can use the midpoint formula, which states that the midpoint (M) between two points ((x_1, y_1)) and ((x_2, y_2)) is given by (M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)). In this case, the x-coordinates are the same (0), so the midpoint's x-coordinate is 0. For the y-coordinates, you calculate (\frac{0 + 15}{2} = 7.5), thus the midpoint is at (0, 7.5).
The average of -9 and 15 is +3 .
To find the midpoint of a segment with endpoints at (-15) and (55), you can use the midpoint formula: ((x_1 + x_2) / 2). Substituting the values, the midpoint is ((-15 + 55) / 2 = 40 / 2 = 20). Therefore, the midpoint of the segment is (20).
The midpoint of a line segment with endpoints at -4, 15 and 22, 3 is (9,9).
If you mean endpoints of (0, 0) and (0, 15) then the midpoint is at (0, 7.5)
Some methods you could use to find the y-coordinate of the midpoint of a vertical line segment with endpoints at 0 0 and 0 15 are by: Counting by hand Dividing 15 by 2
To calculate the y-coordinate of the midpoint of a vertical line segment with endpoints at (0, 0) and (0, 15), you can use the midpoint formula, which is given by ( \text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) ). Here, since both endpoints share the same x-coordinate (0), you only need to average the y-coordinates: ( \frac{0 + 15}{2} = 7.5 ). Thus, the y-coordinate of the midpoint is 7.5.
Each coordinate of the midpoint of a straight line segment is the arithmetic mean of the coordinates of the endpoints. So the y-coordinate is (0+15)/2 = 7.5
To calculate the midpoint of a vertical line segment with endpoints at (0, 0) and (0, 15), you can use the midpoint formula, which is given by ((x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)). In this case, (x_1) and (x_2) are both 0, while (y_1) is 0 and (y_2) is 15. Thus, the midpoint coordinates are ((0, \frac{0 + 15}{2}) = (0, 7.5)).
To calculate the y-coordinate of the midpoint of a vertical line segment with endpoints at (0, 0) and (0, 15), you can use the midpoint formula, which states that the midpoint (M) between two points ((x_1, y_1)) and ((x_2, y_2)) is given by (M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)). In this case, the x-coordinates are the same (0), so the midpoint's x-coordinate is 0. For the y-coordinates, you calculate (\frac{0 + 15}{2} = 7.5), thus the midpoint is at (0, 7.5).
The point on a line segment that is equidistant from the ends of the segment. So pretty much a point in the middle of a segment
(5/2, - 7/2) Apex
-- The x-coordinate of the midpoint is the average of the x-coordinates of the end-points. -- The y-coordinate of the midpoint is the average of the y-coordinates of the end-points. -- The average of two numbers is 1/2 of (the first number plus the second number).
X=10 ef=8 fg=15