Yes, intersecting chords in a circle create a pair of vertical angles, which are always congruent. However, these angles are not supplementary; supplementary angles are those that sum to 180 degrees. Vertical angles formed by intersecting chords are equal to each other, meaning they are not supplementary unless they each measure 90 degrees, which would make them right angles.
True. When two lines intersect, they form vertical angles, and the chords created by these intersecting lines can be considered supplementary if the angles formed by the chords at the intersection add up to 180 degrees. Thus, intersecting chords can indeed correspond to supplementary vertical angles.
True. When two chords intersect, they form vertical angles, and if those angles are supplementary (add up to 180 degrees), the intersecting chords will create pairs of angles that also relate to the properties of those angles. Specifically, the angles formed by the intersecting chords can be analyzed using the relationship between the angles and the arcs they subtend in a circle.
Not unless the chords are both diameters.
true
Yes, congruent central angles in a circle have congruent chords. This is because the length of a chord is determined by the angle subtended at the center of the circle; when two central angles are equal, the arcs they subtend are also equal, leading to chords of the same length. Thus, congruent central angles correspond to congruent chords.
True. When two lines intersect, they form vertical angles, and the chords created by these intersecting lines can be considered supplementary if the angles formed by the chords at the intersection add up to 180 degrees. Thus, intersecting chords can indeed correspond to supplementary vertical angles.
false
True. When two chords intersect, they form vertical angles, and if those angles are supplementary (add up to 180 degrees), the intersecting chords will create pairs of angles that also relate to the properties of those angles. Specifically, the angles formed by the intersecting chords can be analyzed using the relationship between the angles and the arcs they subtend in a circle.
true
apex= True
Not true. If the associated central angles are equal, the two chords would be equal.
Not unless the chords are both diameters.
Sometimes
true
Yes, congruent central angles in a circle have congruent chords. This is because the length of a chord is determined by the angle subtended at the center of the circle; when two central angles are equal, the arcs they subtend are also equal, leading to chords of the same length. Thus, congruent central angles correspond to congruent chords.
It is the measure of half the intercepted arc.
yes