Is the integral of the curve - between the two end points.
The area under an acceleration-time graph is equal to the object's velocity (not change in velocity).
It is not, if it is a graph of force against acceleration.
Displacement is the area under the v-t graph.
The distance travelled over the time period represented by the area under the v-t graph between the end points.
In statistics you can find the area under a curve to establish what to expect between two input numbers. If there is a lot of area under the curve the graph is tall and there is a higher probability of things occurring there than when the graph is low.
To find the area under a graph, you can use calculus by integrating the function that represents the graph. This involves finding the definite integral of the function over the desired interval. The result of the integration will give you the area under the graph.
The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.The momentum-time graph is the integral of the force-time graph. that is, it is the area under the curve of the f-t graph.
The area under an acceleration-time graph is equal to the object's velocity (not change in velocity).
The area under a position-time graph represents the displacement of an object. It is calculated by finding the area between the curve of the graph and the time axis. The units of the area will be in distance units (e.g., meters, kilometers).
It is not, if it is a graph of force against acceleration.
Displacement is the area under the v-t graph.
The distance travelled over the time period represented by the area under the v-t graph between the end points.
distance
The area under a velocity-time graph represents the displacement of an object. If the area is positive, the object is moving in the positive direction; if negative, the object is moving in the negative direction. The steeper the slope of the graph, the greater the velocity.
In statistics you can find the area under a curve to establish what to expect between two input numbers. If there is a lot of area under the curve the graph is tall and there is a higher probability of things occurring there than when the graph is low.
The displacement of an object from a velocity-time graph can be determined by finding the area under the velocity-time graph. For example, the displacement over a certain time interval can be calculated by finding the area of the corresponding region under the velocity-time graph. This can be done by calculating the area of the trapezoid or rectangle formed by the graph.
The area under the velocity time graph of an object is equal to the distance travelled by that object in that time. This is because displacement is the integral of velocity with respect to time so integrating velocity from time A to time B will give the displacement from time A to time B. ( Integrating is the same as calculating the area under the graph)