Q: Can a regular octagon tessellate the plane by itself?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Square.

A regular octagon can tessellate the plane when combined with regular squares. By placing a square in the center of the octagon and surrounding it with eight octagons, the shapes can be repeated infinitely, filling the plane without gaps or overlaps

No. To tessellate a plane you would also need squares.

No.

No. No shape with 7 or more sides will tessellate with multiple copies of itself. All traigles and quadrilaterals will tessellate, there are 14 irregular pentagons (the last was discovered in 2016), and a number of hexagons - including the regular hexagon.

Related questions

A regular octagon will not tessellate but an irregular one can.

No.

Square.

A regular octagon can tessellate the plane when combined with regular squares. By placing a square in the center of the octagon and surrounding it with eight octagons, the shapes can be repeated infinitely, filling the plane without gaps or overlaps

No. To tessellate a plane you would also need squares.

Not by itself.

circles and octagon do not tessellate as they overlap each other or leave spaces between them.

no it cant be unless you use pentagons and octagons like on a soccer ball * * * * * That is an unbelievably rubbish answer! Tessellation - unless otherwise specified - refers to covering a 2-d surface, not the surface of a sphere. Normal soccer balls do not have pentagons and octagons but pentagons and hexagons.

No.

No. No shape with 7 or more sides will tessellate with multiple copies of itself. All traigles and quadrilaterals will tessellate, there are 14 irregular pentagons (the last was discovered in 2016), and a number of hexagons - including the regular hexagon.

No, it is not true that you cannot tessellate a six-sided polygon by itself. Hexagons are a type of polygon that can tessellate, which means they can be arranged in a repeating pattern to completely cover a plane without any gaps or overlaps.

yes -novanet