A vector is characterized by a magnitude, direction and sense of direction. If you are referring to the magnitude of a vector, it cannot be negative because of the way the magnitude is calculated. For example, vector F has components Fx and Fy. The magnitude of F is (Fx^2+Fy^2)^(1/2)
However, you could see something like -F. What you are really looking at is multiplying a vector, F by -1. What this means is that -F has the same magnitude and line of action as F, but has an opposite direction as F.
Chat with our AI personalities
No, the value can't be negative because magnitude of a vector is just how long it is regardless of its direction. :-)
The magnitude of a vector is always treated as non negative and the minus sign indicates the reversal of that vector through an angle of 180 degree.
Yes, a scalar can be a negative number. For instance: c<x₁,x₂> = <cx₁,cx₂> such that <x₁,x₂> is a vector. Let c = -1 for instance. Then, we have this vector: <-x₁,-x₂> Compared to <x₁,x₂>, <-x₁,-x₂> has negative signs. In physics and mathematics, if we multiply the vector or something by a negative value scalar, then the direction of the vector is reversed, and the magnitude stays the same. If the magnitude increases/decreases, and the direction of the vector is reversed, then we can multiply the vector by any negative non-1 scalar value.
A null vector has no magnitude, a negative vector does have a magnitude but it is in the direction opposite to that of the reference vector.
Vectors have magnitude and direction. The magnitude is always a positive number.