answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
BeauBeau
You're doing better than you think!
Chat with Beau
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: Can the random error be predicted in the regression model?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the difference between the stochastic error term and the residual?

Ah, the stochastic error term and the residual are like happy little clouds in our painting. The stochastic error term represents the random variability in our data that we can't explain, while the residual is the difference between the observed value and the predicted value by our model. Both are important in understanding and improving our models, just like adding details to our beautiful landscape.


What does f statistic mean?

The F-statistic is a test on ratio of the sum of squares regression and the sum of squares error (divided by their degrees of freedom). If this ratio is large, then the regression dominates and the model fits well. If it is small, the regression model is poorly fitting.


Linear regression model?

y(i) = a + b1.x1(i) + b2.x2(i) + b3.x3(i) + ... + bk.xk(i) + e(i)where i = 1, 2, ... n are n observations ofthe independent variables x1, x2, ... xk,y is the dependent variablea and the b are regression parameters.The e are independent, identically distributed random variables (representing the error).


What are some of the advantages and disadvantages of making forecasts using regression methods?

+ Linear regression is a simple statistical process and so is easy to carry out. + Some non-linear relationships can be converted to linear relationships using simple transformations. - The error structure may not be suitable for regression (independent, identically distributed). - The regression model used may not be appropriate or an important variable may have been omitted. - The residual error may be too large.


What is the difference between the logistic regression and regular regression?

in general regression model the dependent variable is continuous and independent variable is discrete type. in genral regression model the variables are linearly related. in logistic regression model the response varaible must be categorical type. the relation ship between the response and explonatory variables is non-linear.