Q: Can you give 5 examples of terminating decimals?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

terminating decimals repeating decimals

Pi, the square root of 7, e, 1/3, and ______ irrational numbers, square roots, repeating decimals

Their denominators have prime factors of 2 or 5.

The only prime factors are 2 and 5.

In their simplest form the denominators have no prime factor other than 2 or 5.

Related questions

terminating decimals repeating decimals

Pi, the square root of 7, e, 1/3, and ______ irrational numbers, square roots, repeating decimals

sqrt(2), sqrt(3), sqrt(5), 2+sqrt(3) pi, e

Their denominators have prime factors of 2 or 5.

The only prime factors are 2 and 5.

In their simplest form the denominators have no prime factor other than 2 or 5.

If the denominator of the fraction has any prime factor other than 2 or 5, then it has a decimal representation with a repeating sequence of digits. If the denominator is a product of any number of 2s or 5s then it can be represented as a terminating decimal.

There is at least one example: 4/5 = 0.8 5/4 = 1.25

Fractions are related to repeating decimals in the sense that a fraction can be represented as a repeating decimal if the denominator has prime factors other than 2 or 5. For example, 1/3 can be represented as 0.3333..., with the 3s repeating infinitely. Terminating decimals, on the other hand, are fractions that have denominators which are powers of 10. For example, 1/4 can be represented as 0.25, which terminates after two decimal places.

If a fraction, in its simplest form has a denominator whose only prime factors are 2 or 5, then the fraction is terminating. If the denominator has any other prime factor then the decimal is repeating.

To sum this answer up you half to turn the fraction into a decimal and if it ends that is terminating but if it keeps going it is called a repeating decimal EXAMPLES Terminating- 5/10=.5 Repeating- 1/3=.3333 (bar notation over the 3)

Rational numbers will become either a terminating decimal (if the denominator has prime factors of 2 and/or 5 only) or a decimal that recurs one or more digits (possibly after one or more digits that do not recur). Examples: 1/2 = 0.5 (terminates) 1/3 = 0.333.... (3 recurs) 1/6 = 0.1666.... (6 recurs after the initial non-recurring 1) 1/7 = 0.142857142857142857.... (142857 recurs)