0111 0110
"Binary decimal" is a contradiction in terms. Decimal has a base of 10, binary a base of 2 and hexadecimal a base of 16.The way I would do it is:If you have a value in binary then convert this to a decimal value. Then convert it to hexadecimal remembering that the number will now be comprised by the following (where x represents the digit):The first digit (from right to left) will equal x * 160, the next will equal x * 161 and so forth...An example:So in binary 11111 = (1 * 20) + (1 * 21) + (1 * 22) + (1 * 23) + (1 * 24) = 1 + 2 + 4 + 8 + 16 = 31 (in decimal).To write this in hexadecimal, 31 would be (15 * 160) + (1 * 161) = 1FNote: A tip - If you are using a Windows operating system, then if you go to the Start menu and choose search/run and type in "calc" or "calculator" then you will get a virtual calculator to use. If you choose "programmer" from the View menu and then choose the "Bin" button and type in a binary value and then choose the "Hex" button then the binary value will be converted to hexadecimal. (The above certainly applies for Windows 7).
ASCII for K is 0x4b = 75 = 0100 1011
Since a binary digit has only two possible values, each digit bears less information than in decimal, where each digit can have ten different values.
To represent the name "Sam" in binary code, you need to convert each letter to its ASCII value and then to binary. The ASCII values for 'S', 'a', and 'm' are 83, 97, and 109, respectively. In binary, these values are represented as: 'S' = 01010011, 'a' = 01100001, and 'm' = 01101101. Therefore, "Sam" in binary code is 01010011 01100001 01101101.
To find the decimal equivalent of an 8-bit binary number, you can use the positional numbering system. Each bit in the binary number represents a power of 2, from right to left. Starting from the rightmost bit, you assign a value of 2^0, 2^1, 2^2, and so on, doubling the value for each position. Then, you sum up the values of the positions where the binary digit is 1. This sum is the decimal equivalent of the 8-bit binary number.
Binary- 01100111 Decimal Value- 103
The binary values is 10110101.
Neither of the following are true about 1 bit, it can not represent decimal values 0 and 9 nor can it be used to represent one character in the lowercase English alphabet and one binary digit four binary. A true statement would be that 1 bit is represented by the decimal values 0 or 1.
It is 1111.
Many non-integral values, such as decimal 0.2, have an infinite place-value representation in binary (.001100110011...) but have a finite place-value in binary-coded decimal (0.0010)[bcd]. Consequently a system based on binary-coded decimal representations of decimal fractions avoids errors representing and calculating such values. Rounding at a decimal digit boundary is simpler in BCD. Addition and subtraction in decimal does not require rounding.
"Binary decimal" is a contradiction in terms. Decimal has a base of 10, binary a base of 2 and hexadecimal a base of 16.The way I would do it is:If you have a value in binary then convert this to a decimal value. Then convert it to hexadecimal remembering that the number will now be comprised by the following (where x represents the digit):The first digit (from right to left) will equal x * 160, the next will equal x * 161 and so forth...An example:So in binary 11111 = (1 * 20) + (1 * 21) + (1 * 22) + (1 * 23) + (1 * 24) = 1 + 2 + 4 + 8 + 16 = 31 (in decimal).To write this in hexadecimal, 31 would be (15 * 160) + (1 * 161) = 1FNote: A tip - If you are using a Windows operating system, then if you go to the Start menu and choose search/run and type in "calc" or "calculator" then you will get a virtual calculator to use. If you choose "programmer" from the View menu and then choose the "Bin" button and type in a binary value and then choose the "Hex" button then the binary value will be converted to hexadecimal. (The above certainly applies for Windows 7).
The standard written format for an IP address is as 4 bytes written as their decimal values separated by periods. Just convert each decimal value to a binary byte and append them to make a 32 bit number. Reverse that to convert a 32 bit number to 4 decimal bytes separated by periods.
Decimal (more formally, binary coded decimal) values store numeric information as digits encoded using the four bit binary equivalents: 0 (0000) to 9 (1001). That means a single byte can hold values between 0 and 99. But simply using the same byte to hold a binary value will yield values between 0 and 255 (or –128 and +127).
ASCII for K is 0x4b = 75 = 0100 1011
You divide percent values by 100 to get the decimal equivalent: 0.50% / 100 = 0.005
Since a binary digit has only two possible values, each digit bears less information than in decimal, where each digit can have ten different values.
To represent the name "Sam" in binary code, you need to convert each letter to its ASCII value and then to binary. The ASCII values for 'S', 'a', and 'm' are 83, 97, and 109, respectively. In binary, these values are represented as: 'S' = 01010011, 'a' = 01100001, and 'm' = 01101101. Therefore, "Sam" in binary code is 01010011 01100001 01101101.