Yes. There are lots of answers that will satisfy each.
Yes.
Yes.
A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.
There is only one solution set. Depending on the inequalities, the set can be empty, have a finite number of solutions, or have an infinite number of solutions. In all cases, there is only one solution set.
No. For example, the solution to x ≤ 4 and x ≥ 4 is x = 4.
Yes.
Yes.
A solution to a linear inequality in two variables is an ordered pair (x, y) that makes the inequality a true statement. The solution set is the set of all solutions to the inequality. The solution set to an inequality in two variables is typically a region in the xy-plane, which means that there are infinitely many solutions. Sometimes a solution set must satisfy two inequalities in a system of linear inequalities in two variables. If it does not satisfy both inequalities then it is not a solution.
There is only one solution set. Depending on the inequalities, the set can be empty, have a finite number of solutions, or have an infinite number of solutions. In all cases, there is only one solution set.
No. For example, the solution to x ≤ 4 and x ≥ 4 is x = 4.
To verify the solutions of a system of linear inequalities from a graph, check if the points satisfy all the inequalities in the system. You can do this by substituting the coordinates of each point into the original inequalities to see if they hold true. Additionally, ensure that the points lie within the shaded region of the graph, which represents the solution set. If both conditions are met, the solutions are confirmed to be true.
In a graph of a system of two linear inequalities, the doubly shaded region represents the set of all points that satisfy both inequalities simultaneously. Any point within this region will meet the criteria set by both linear inequalities, meaning its coordinates will fulfill the conditions of each inequality. Consequently, this region illustrates all possible solutions that satisfy the system, while points outside this region do not satisfy at least one of the inequalities.
Not every system of inequalities has a solution. A system of inequalities can be inconsistent, meaning that there are no values that satisfy all inequalities simultaneously. For example, the inequalities (x < 1) and (x > 2) cannot be satisfied at the same time, resulting in no solution. However, many systems do have solutions, which can be represented as a feasible region on a graph.
A set of two or more inequalities is known as a system of inequalities. This system consists of multiple inequalities that involve the same variables and can be solved simultaneously to find a range of values that satisfy all conditions. Solutions to a system of inequalities are often represented graphically, where the feasible region indicates all possible solutions that meet all the inequalities. Such systems are commonly used in linear programming and optimization problems.
The graphs of systems of linear equations represent the relationships between variables, with each line corresponding to an equation. The point(s) where the lines intersect indicate the solution(s) to the system, showing where the equations are satisfied simultaneously. For systems of linear inequalities, the graphs display shaded regions that represent all possible solutions that satisfy the inequalities; the intersection of these regions highlights the feasible solutions. Therefore, both the graphs and their intersections are crucial for understanding the solutions to the systems.
To determine the points that are solutions to the system of inequalities (y \leq 6x + 7) and (y \geq 6x + 9), we need to analyze the area between the two lines represented by these inequalities. The first inequality represents a region below the line (y = 6x + 7), while the second represents the region above the line (y = 6x + 9). Since the two lines are parallel, there are no points that satisfy both inequalities simultaneously; thus, there are no solutions to the system.
Algebraically, solutions to an equation yield specific values that satisfy the equality, while solutions to an inequality provide a range of values that satisfy the condition (e.g., greater than or less than). Graphically, an equation is represented by a distinct curve or line where points satisfy the equality, whereas an inequality is represented by a shaded region that indicates all points satisfying the inequality, often including a boundary line that can be either solid (for ≤ or ≥) or dashed (for < or >). This distinction highlights the difference in the nature of solutions: precise for equations and broad for inequalities.