To determine if the measurements indicate that triangle ABC is congruent to triangle DEF by the ASA (Angle-Side-Angle) theorem, you need to verify that two angles and the included side of triangle ABC are equal to the corresponding two angles and the included side of triangle DEF. If these conditions are satisfied, then yes, the ASA theorem applies, confirming the congruence of the two triangles. If not, further analysis would be needed to evaluate congruence using other theorems or criteria.
Gram crackers
asa theorem
asa
To show that triangle ABC is congruent to triangle DEF by the Angle-Side-Angle (ASA) criterion, you need to establish that two angles and the included side of triangle ABC are congruent to the corresponding two angles and the included side of triangle DEF. Specifically, you would need to demonstrate that ∠A is congruent to ∠D, ∠B is congruent to ∠E, and the side AB is congruent to side DE. Once these conditions are satisfied, you can conclude that triangle ABC is congruent to triangle DEF by the ASA theorem.
there are 4 types of congruence theorem-: ASA,SSS,RHS,SAS
ASA
Gram crackers
Asa /sss
asa theorem
asa
asa
AAS theorem and ASA postulate by john overbay
It is a special case of ASA congruence.
To show that triangle ABC is congruent to triangle DEF by the Angle-Side-Angle (ASA) criterion, you need to establish that two angles and the included side of triangle ABC are congruent to the corresponding two angles and the included side of triangle DEF. Specifically, you would need to demonstrate that ∠A is congruent to ∠D, ∠B is congruent to ∠E, and the side AB is congruent to side DE. Once these conditions are satisfied, you can conclude that triangle ABC is congruent to triangle DEF by the ASA theorem.
ASA
AAS and ASA [APEX]
The correct answer is the AAS theorem