answersLogoWhite

0

No, the division sign (÷) does not have rotational symmetry. When rotated 180 degrees, it does not look the same as its original position. In contrast, shapes like circles or squares exhibit rotational symmetry, but the division sign does not fit this criterion.

User Avatar

AnswerBot

2w ago

What else can I help you with?

Related Questions

Does a stop sign have rotational symmetry?

If you ignore the lettering and the post, yes


Does a dollar sign have rotational symmetry?

Yes


What is the rotational symmetry of a trapezoid?

A trapezium does not have rotational symmetry.


Does z have rotational symmetry but no line symmetry?

The letters H and Z have both line symmetry and rotational symmetry


How does a stop sign have rotational symmetry?

A stop sign, typically an octagon, exhibits rotational symmetry because it can be rotated around its center point and still appear unchanged at specific angles. Specifically, a stop sign has rotational symmetry of order 8, meaning it looks the same after a rotation of 45 degrees (1/8 of a full circle). This symmetry allows it to maintain its appearance from multiple orientations, ensuring its visibility and recognition from different angles.


How many lines of symmetry does a division sign have?

A division sign (÷) has two lines of symmetry. One line of symmetry runs vertically through the center, and the other runs horizontally through the center. This means the division sign is symmetrical along both the vertical and horizontal axes.


How much rotational symmetry does an octagon have?

It has 8lines of rotational symmetry


What rotational symmetry does a trapezoid have?

A trapezoid has no rotational symmetry.


Which triangles have rotational symmetry?

Equilateral triangles have rotational symmetry.


What is the rotational symmetry of a rectangle?

It has rotational symmetry to the order of 2


Is z rotational symmetry?

No a Z doesn't have a rotational symmetry


How many rotational symmetry fold does a line have?

A line has rotational symmetry of order 2.