Three points can lie in more than one plane if they are not collinear. If the three points are non-collinear, they define a unique plane, but if they are collinear, they can lie on infinitely many planes that contain that line. Additionally, if you consider different orientations or positions of planes that intersect the line formed by the collinear points, these also contribute to the existence of multiple planes. Therefore, the arrangement and relationship of the points determine how many planes can contain them.
Infinitely many planes contain any two given points- it takes three (non-collinear) points to determine a plane.
Three or more points are collinear if they are all in the same straight line. They are non collinear if at least one of them is not on the same line as the rest. Four or more points are coplanar if they are all in the same plane. They are non coplanar if at least one of them is not on the same plane as the rest.
Three non-collinear points always define exactly one and only one plane. That's why a 3-legged table or chair never wobbles.
No, A plane can be drawn through any 3 points. If the 3 points are collinear then they make a line and a plane can contain a line. If the points are noncollinear then they can be used to form the corners of a triangle; all points of a triangle are in the same plane.
Yes, it is.
I dont think that "If four points are collinear they are also coplaner," is the same thing as "If four points are coplaner they are also collinear,". The definition of collinear is at least three points on the same line. To define a plane is to have threenoncollinear points.
Three points can lie in more than one plane if they are not collinear. If the three points are non-collinear, they define a unique plane, but if they are collinear, they can lie on infinitely many planes that contain that line. Additionally, if you consider different orientations or positions of planes that intersect the line formed by the collinear points, these also contribute to the existence of multiple planes. Therefore, the arrangement and relationship of the points determine how many planes can contain them.
Points that are collinear will be located on the same line. A line is a subset of a plane. Therefore, Yes, points that are collinear will be located on the same plane.
Infinitely many planes contain any two given points- it takes three (non-collinear) points to determine a plane.
Three collinear points don't define a plane."Define" means narrow it down to one and only one unique plane, so that it can't be confused with any other one.There are many different planes (actually infinite) that can contain three collinear points, so no unique plane is defined.
There will always be a single plane through all three points.
Three or more points are collinear if they are all in the same straight line. They are non collinear if at least one of them is not on the same line as the rest. Four or more points are coplanar if they are all in the same plane. They are non coplanar if at least one of them is not on the same plane as the rest.
Three non-collinear points always define exactly one and only one plane. That's why a 3-legged table or chair never wobbles.
There are an infinite number of any kind of points in any plane. But once you have three ( 3 ) non-collinear points, you know exactly which plane they're in, because there's no other plane that contains the same three non-collinear points.
No, A plane can be drawn through any 3 points. If the 3 points are collinear then they make a line and a plane can contain a line. If the points are noncollinear then they can be used to form the corners of a triangle; all points of a triangle are in the same plane.
The points are collinear, and there is an infinite number of planes that contain a given line. A plane containing the line can be rotated about the line by any number of degrees to form an unlimited number of other planes.If, on the other hand, the points are not collinear, then the plane has no wriggle room: it is stuck fast in one place - there can be only one plane containing all the points. Provided they are non-colinear, three points will define a plane.