extraneous solution. or the lines do not intersect. There is no common point (solution) for the system of equation.
there is no linear equations that has no solution every problem has a solution
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
The solution is the coordinates of the point where the graphs of the equations intersect.
its a system of equations, with no solution
extraneous solution. or the lines do not intersect. There is no common point (solution) for the system of equation.
there is no linear equations that has no solution every problem has a solution
A system of equations with exactly one solution intersects at a singular point, and none of the equations in the system (if lines) are parallel.
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
The solution of a system of linear equations is a pair of values that make both of the equations true.
A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.
The solution of a system of equations corresponds to the point where the graphs of the equations intersect. If the equations have one unique point of intersection, that point represents the solution of the system. If the graphs are parallel and do not intersect, the system has no solution. If the graphs overlap and coincide, the system has infinitely many solutions.
No because there are no equations there to choose from.
The set of points the graphed equations have in common. This is usually a single point but the lines can be coincident in which case the solution is a line or they can be parallel in which case there are no solutions to represent.
The solution is the coordinates of the point where the graphs of the equations intersect.
Independence:The equations of a linear system are independentif none of the equations can be derived algebraically from the others. When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set.Consistency:The equations of a linear system are consistent if they possess a common solution, and inconsistent otherwise. When the equations are inconsistent, it is possible to derive a contradiction from the equations, such as the statement that 0 = 1.Homogeneous:If the linear equations in a given system have a value of zero for all of their constant terms, the system is homogeneous.If one or more of the system's constant terms aren't zero, then the system is nonhomogeneous.
If the equations or inequalities have the same slope, they have no solution or infinite solutions. If the equations/inequalities have different slopes, the system has only one solution.