answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
BeauBeau
You're doing better than you think!
Chat with Beau

Add your answer:

Earn +20 pts
Q: Every finite division ring is a field?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Can one formally define a division ring as a field that isn't necessarily commutative?

wedderburn's little theorem says all finite division rings are commutative so they are fields. So if it is a finite division ring, then the answer is NO But for an infinite division ring... I think you can!


What is an algebraic number field?

The real number system is a mathematical field. To start with, the Real number system is a Group. This means that it is a set of elements (numbers) with a binary operation (addition) that combines any two elements in the set to form a third element which is also in the set. The Group satisfies four axioms: closure, associativity, identity and invertibility. In addition, it is a Ring. A ring is an Abelian group (that is, addition is commutative) and it has a second binary operation (multiplication) that is defined on its elements. This second operation is distributive over the first. And finally, a Field is a Ring over which division - by non-zero numbers - is defined. There are several mathematical terms above which have been left undefined to keep the answer to a manageable size. All these algebraic structures are more than a term's worth of studying. You can find out more about them using Wikipedia but be sure to select the hit that has "mathematical" in it!


How field is denoted in algebra?

A field is a commutative ring in which all non zero elements have inverses or all the elements are units


One tree ring equals how much time?

A tree gets a new ring every year, so I suppose a tree ring equals one year.


What is axioms of real number?

The real number system is a mathematical field. To start with, the Real number system is a Group. This means that it is a set of elements (numbers) with a binary operation (addition) that combines any two elements in the set to form a third element which is also in the set. The Group satisfies four axioms: closure, associativity, identity and invertibility. In addition, it is a Ring. A ring is an Abelian group (that is, addition is commutative) and it has a second binary operation (multiplication) that is defined on its elements. This second operation is distributive over the first. And finally, a Field is a Ring over which division - by non-zero numbers - is defined. The algebraic structures (Group, Ring, Field) are more than a term's worth of studying. There are also several mathematical terms above which have been left undefined to keep the answer to a manageable size. You can find out more about them using Wikipedia but be sure to select the hit that has "mathematical" in it!