answersLogoWhite

0

Circle : x^2 + y^2 = 16a^2 , therefore, y = +√(16a^2 - x^2) (above X-axis)

Parabola : y^2 = 6ax , therefore, y = +√(6ax) (above X-axis)

Intersection point of circle with parabola :

√(16a^2 - x^2) = √(6ax)

16a^2 - x^2 = 6ax

x^2 + 6ax - 16a^2 = 0

(x - 2a)(x + 8a) = 0

x = 2a (as the only positive zero)

Total common area = 2 * common area above X-axis

Common area above X-axis

= ∫ (6ax) dx (from 0 to 2a) + ∫ √(16a^2 - x^2) dx (from 2a to 4)

= {2x√(6ax)/3} (from 0 to 2a) +

{(x/2)√(16a^2 - x^2) + 8arctan[x/√(16a^2 - x^2)]} (from 2a to 4)

= 8√(3)*a^2/3 + 8√(a^2 - 1) + 8arctan[1/√(a^2 - 1)] - 2√(3)*a^2 - 4π/3

Therefore, total common area

= 2{8√(3)*a^2/3 + 8√(a^2 - 1) + 8arctan[1/√(a^2 - 1)] - 2√(3)*a^2 - 4π/3}

Area of circle = πr^2 = 16π

Therefore, larger area of the circle

= 16π - 2{8√(3)*a^2/3 + 8√(a^2 - 1) + 8arctan[1/√(a^2 - 1)] - 2√(3)*a^2 - 4π/3}

= (4/3){14π - a^2√(3) - 12√(a^2 - 1) - 12arctan[1/√(a^2 - 1)]}

(Note: if a = 1, then arctan[1/√(a^2 - 1)] = π/2)

User Avatar

Wiki User

15y ago

What else can I help you with?