(99,90)
(105,75)
No, the circle is inscribed in the quadrilateral.
No. For example, if one angle measures 100 degrees, and its adjacent angle is 80 degrees, then the opposite angles would be either 200 or 160 degrees, but in order for a quadrilateral to be inscribed in a circle the opposite angles would have to equal 180 degrees. A parallelogram can be inscribed in a circle if it is a rectangle.
It is an inscribed quadrilateral or cyclic quadrilateral.
Yes, a parallelogram inscribed in a circle must be a rectangle. This is because a circle's inscribed angle theorem states that the opposite angles of a cyclic quadrilateral (a quadrilateral inscribed in a circle) must be supplementary. In a parallelogram, opposite angles are equal, which can only hold true if all angles are right angles, thus making the parallelogram a rectangle.
cyclic
The opposite angles of a quadrilateral inscribed in a circle are supplementary, meaning they add up to 180 degrees. This is due to the property that the sum of the opposite angles of any quadrilateral inscribed in a circle is always 180 degrees. This property can be proven using properties of angles subtended by the same arc in a circle.
A quadrilateral is inscribed in a circle it means all the vertices of quadrilateral are touching the circle. therefore it is a cyclic quadrilateral and sum of the opposite angles in cyclic quadrilateral is supplementary. suppose if one angle is A then another will be 180 degree - angle A.
No, the circle is inscribed in the quadrilateral.
No. For example, if one angle measures 100 degrees, and its adjacent angle is 80 degrees, then the opposite angles would be either 200 or 160 degrees, but in order for a quadrilateral to be inscribed in a circle the opposite angles would have to equal 180 degrees. A parallelogram can be inscribed in a circle if it is a rectangle.
It is an inscribed quadrilateral or cyclic quadrilateral.
opposite angles are supplementary
Yes, a parallelogram inscribed in a circle must be a rectangle. This is because a circle's inscribed angle theorem states that the opposite angles of a cyclic quadrilateral (a quadrilateral inscribed in a circle) must be supplementary. In a parallelogram, opposite angles are equal, which can only hold true if all angles are right angles, thus making the parallelogram a rectangle.
cyclic
A quadrilateral can be inscribed in a circle if the opposite angles are supplementary. To determine which set of measures cannot form a cyclic quadrilateral, we calculate the sums of opposite angles for each set. The set of angles 100, 72, 80, and 108 has opposite angle pairs (100 + 80 = 180 and 72 + 108 = 180), which are supplementary. However, the other sets do not all yield supplementary pairs, with 42, 64, 118, and 136 failing this condition. Thus, 42, 64, 118, and 136 describe a quadrilateral that cannot be inscribed in a circle.
yes
If a parallelogram is inscribed in a circle then it must be a cyclic quadrilateral.
A cyclic quadrilateral is one where the sum of measures of opposite angles is 180 degrees. I t mostly is formed with the vertices as part of the circumference of a circle.