Q: Has anyone memorised the 100000 digits of pi?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

pi is an irrational number so there are no sustained patterns in the digits of pi.

The first eleven digits of pi are:3.141592653

(Pi) is not an 'infinite number'. It just can't be written exactly with any finite number of digits. But there are plenty of digits available, to make your division as accurate as you want it. You can never get an exact answer, just like you can never write the exact value of (pi), but you can get as close as anyone will ever need to get.

1

The digits of pi are not periodic. Pi is an irrational constant, and if its digits were periodic, it could be expressed as a ratio of constant integers, meaning it would be rational.

Related questions

Chao Lu (China) memorised the number Pi to 67,890 digits in 2005. The number of digits that the world record holder has memorised in total would be nearly impossible to know.

Not from memory.

The first 250 digits of pi are: 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091

pi is an irrational number so there are no sustained patterns in the digits of pi.

To 30 digits, pi equals 3.141592653589793238462643383279.

3.14159265358979323846 are the first 20 digits of pi.

The first eleven digits of pi are:3.141592653

1.2411 trillion digits (1,241,100,000,000) digits of pi have been dicovered.

3.14159265358979323846264338327 are the first 30 digits of pi.

Pi is irrational, there are no last digits, the number does not end.

3.14159265358979323864062384626238832795028841971693939937510582097494459230781640628620898628034825342117067 These are the hundred digits of pi

(Pi) is not an 'infinite number'. It just can't be written exactly with any finite number of digits. But there are plenty of digits available, to make your division as accurate as you want it. You can never get an exact answer, just like you can never write the exact value of (pi), but you can get as close as anyone will ever need to get.