If x is the angle between the two vectors then the magnitudes are equal if cos(x) = sin(x). That is, when x = pi/4 radians.
no .....the scalar product of two vectors never be negative Yes it can If A is a vector, and B = -A, then A.B = -A2 which is negative. Always negative when the angle is between the vectors is obtuse.
Dot Product:Given two vectors, a and b, their dot product, represented as a ● b, is equal to their magnitudes multiplied by the cosine of the angle between them, θ, and is a scalar value.a ● b = ║a║║b║cos(θ)Cross Product:Given two vectors, a and b, their cross product, which is a vector, is represented as a X b and is equal to their magnitudes multiplied by the sine of the angle between them, θ, and then multiplied by a unit vector, n, which points perpendicularly away, via the right-hand rule, from the plane that a and bdefine.a X b= ║a║║b║sin(θ)n
(A1) The dot product of two vectors is a scalar and the cross product is a vector? ================================== (A2) The cross product of two vectors, A and B, would be [a*b*sin(alpha)]C, where a = |A|; b = |B|; c = |C|; and C is vector that is orthogonal to A and B and oriented according to the right-hand rule (see the related link). The dot product of the two vectors, A and B, would be [a*b*cos(alpha)]. For [a*b*sin(alpha)]C to equal to [a*b*cos(alpha)], we have to have a trivial solution -- alpha = 0 and either a or b be zero, so that both expressions are zeroes but equal. ================================== Of course one is the number zero( scalar), and one is the zero vector. It is a small difference but worth mentioning. That is is to say if a or b is the zero vector, then a dot b must equal zero as a scalar. And similarly the cross product of any vector and the zero vector is the zero vector. (A3) The magnitude of the dot product is equal to the magnitude of the cross product when the angle between the vectors is 45 degrees.
Cross product tests for parallelism and Dot product tests for perpendicularity. Cross and Dot products are used in applications involving angles between vectors. For example given two vectors A and B; The parallel product is AxB= |AB|sin(AB). If AXB=|AB|sin(AB)=0 then Angle (AB) is an even multiple of 90 degrees. This is considered a parallel condition. Cross product tests for parallelism. The perpendicular product is A.B= -|AB|cos(AB) If A.B = -|AB|cos(AB) = 0 then Angle (AB) is an odd multiple of 90 degrees. This is considered a perpendicular condition. Dot product tests for perpendicular.
If x is the angle between the two vectors then the magnitudes are equal if cos(x) = sin(x). That is, when x = pi/4 radians.
Scalar product (or dot product) is the product of the magnitudes of two vectors and the cosine of the angle between them. It results in a scalar quantity. Vector product (or cross product) is the product of the magnitudes of two vectors and the sine of the angle between them, which results in a vector perpendicular to the plane containing the two original vectors.
no .....the scalar product of two vectors never be negative Yes it can If A is a vector, and B = -A, then A.B = -A2 which is negative. Always negative when the angle is between the vectors is obtuse.
Dot Product:Given two vectors, a and b, their dot product, represented as a ● b, is equal to their magnitudes multiplied by the cosine of the angle between them, θ, and is a scalar value.a ● b = ║a║║b║cos(θ)Cross Product:Given two vectors, a and b, their cross product, which is a vector, is represented as a X b and is equal to their magnitudes multiplied by the sine of the angle between them, θ, and then multiplied by a unit vector, n, which points perpendicularly away, via the right-hand rule, from the plane that a and b define.a X b = ║a║║b║sin(θ)n
Dot Product:Given two vectors, a and b, their dot product, represented as a ● b, is equal to their magnitudes multiplied by the cosine of the angle between them, θ, and is a scalar value.a ● b = ║a║║b║cos(θ)Cross Product:Given two vectors, a and b, their cross product, which is a vector, is represented as a X b and is equal to their magnitudes multiplied by the sine of the angle between them, θ, and then multiplied by a unit vector, n, which points perpendicularly away, via the right-hand rule, from the plane that a and bdefine.a X b= ║a║║b║sin(θ)n
if any one of the vectors is a null vector or if A is the angle between the two vectors then tanA =1
(A1) The dot product of two vectors is a scalar and the cross product is a vector? ================================== (A2) The cross product of two vectors, A and B, would be [a*b*sin(alpha)]C, where a = |A|; b = |B|; c = |C|; and C is vector that is orthogonal to A and B and oriented according to the right-hand rule (see the related link). The dot product of the two vectors, A and B, would be [a*b*cos(alpha)]. For [a*b*sin(alpha)]C to equal to [a*b*cos(alpha)], we have to have a trivial solution -- alpha = 0 and either a or b be zero, so that both expressions are zeroes but equal. ================================== Of course one is the number zero( scalar), and one is the zero vector. It is a small difference but worth mentioning. That is is to say if a or b is the zero vector, then a dot b must equal zero as a scalar. And similarly the cross product of any vector and the zero vector is the zero vector. (A3) The magnitude of the dot product is equal to the magnitude of the cross product when the angle between the vectors is 45 degrees.
Cross product tests for parallelism and Dot product tests for perpendicularity. Cross and Dot products are used in applications involving angles between vectors. For example given two vectors A and B; The parallel product is AxB= |AB|sin(AB). If AXB=|AB|sin(AB)=0 then Angle (AB) is an even multiple of 90 degrees. This is considered a parallel condition. Cross product tests for parallelism. The perpendicular product is A.B= -|AB|cos(AB) If A.B = -|AB|cos(AB) = 0 then Angle (AB) is an odd multiple of 90 degrees. This is considered a perpendicular condition. Dot product tests for perpendicular.
To multiply two vectors in 3D, you can use the dot product or the cross product. The dot product results in a scalar quantity, while the cross product produces a new vector that is perpendicular to the original two vectors.
Normally you use sine theta with the cross product and cos theta with the vector product, so that the cross product of parallel vectors is zero while the dot product of vectors at right angles is zero.
If A and B are vectors then AxB=ABsin(AB). If A and B are not zero then AxB is zero if and only if sin(AB)=0 meaning the angle between A and B is a multiple of 180 degrees, in other words parallel.
because that is the def. of a cross-product!