If a,b, and c are positive a < x < b means ax < cx If a,b , and c are negative a < x < b means ax > cx
(ax)(ax) = a2 + 2ax + x2
I have a code for 16 bit subtraction.. just replace ax by al,bx by bl etc... .code main proc mov ax,@data mov ds,ax lea dx,msg ;printing msg mov ah,09h int 21h mov ax,x ;ax=x(any number) mov bx,y ;bx=y( " ") cmp ax,0 ;jump to l3 if ax is negtive jb l3 cmp bx,0 ;jump to l6 if bx is negative jb l6 cmp ax,bx ;if ax<bx,then jump to l1 jl l1 sub ax,bx ;else normal sub mov diff,ax ;diff=result is stored jmp l2 l1: ;iff (+)ax<(+)bx neg bx ;bx=-bx clc add ax,bx neg ax ;-ans=ans mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l3: ;iff (-)ax neg ax ;-ax=ax cmp bx,0 ;jump to l4 if bx is negative jb l4 clc add ax,bx ;ax=(+)ax+(+)bx mov ax,diff mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l4: ;if (-)ax & (-)bx neg bx ;-bx=bx cmp ax,bx ;if ax>bx then jump to l5 jg l5 sub ax,bx ;else ax-bx mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l3 l5: ;if(-)ax>(-)bx xchg ax,bx ;exchange ax and bx sub ax,bx ;ax-bx mov diff,ax ;ans is positive jmp l2 l6: ;iff (-)bx neg bx ;-bx=bx add ax,bx ;ax-(-)bx mov diff,ax ;ans will be positive mov ah,4ch int 21h main endp
ax + b = 15 or ax + b = -15
Any number, raised to the power 0 is 1.This comes from the index law: ax* ay= ax+yLet y = 0 and you have ax* a0= ax+0But x+0 = x so the right hand side is ax.That means ax* a0= axSince this is true for all a, a0must be the multiplicative identity = 1.Any number, raised to the power 0 is 1.This comes from the index law: ax* ay= ax+yLet y = 0 and you have ax* a0= ax+0But x+0 = x so the right hand side is ax.That means ax* a0= axSince this is true for all a, a0must be the multiplicative identity = 1.Any number, raised to the power 0 is 1.This comes from the index law: ax* ay= ax+yLet y = 0 and you have ax* a0= ax+0But x+0 = x so the right hand side is ax.That means ax* a0= axSince this is true for all a, a0must be the multiplicative identity = 1.Any number, raised to the power 0 is 1.This comes from the index law: ax* ay= ax+yLet y = 0 and you have ax* a0= ax+0But x+0 = x so the right hand side is ax.That means ax* a0= axSince this is true for all a, a0must be the multiplicative identity = 1.
If a,b, and c are positive a < x < b means ax < cx If a,b , and c are negative a < x < b means ax > cx
(ax)(ax) = a2 + 2ax + x2
The prefix "ax" typically means "to cut" or "to split." It is often used in words related to chopping or dividing, such as "axiom" (a self-evident truth) or "axiology" (the study of values).
The difference is in the shape of the head of the ax.
The Latin root 'ax' means "to go, to move, to lead." It is derived from the Latin word "agere," which means "to do or drive." This root is commonly found in words related to action, movement, and leadership.
The homonym of "ax" is "acts." "Ax" is a tool used for chopping, while "acts" refers to actions or performances.
Tagalog Translation of AX: palakol
Surface Tension ~ see related link below .
From the basic woodsmans ax.
The ax is a wedge.
The ESP LTD AX-414.
.code main proc mov ax,@data mov ds,ax lea dx,msg ;printing msg mov ah,09h int 21h mov ax,x ;ax=x mov bx,y ;bx=y cmp ax,0 ;jump to l3 if ax is negtive jb l3 cmp bx,0 ;jump to l6 if bx is negative jb l6 cmp ax,bx ;if ax<bx,then jump to l1 jl l1 sub ax,bx ;else normal sub mov diff,ax ;diff=result is stored jmp l2 l1: ;iff (+)ax<(+)bx neg bx ;bx=-bx clc add ax,bx neg ax ;-ans=ans mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l3: ;iff (-)ax neg ax ;-ax=ax cmp bx,0 ;jump to l4 if bx is negative jb l4 clc add ax,bx ;ax=(+)ax+(+)bx mov ax,diff mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l4: ;if (-)ax & (-)bx neg bx ;-bx=bx cmp ax,bx ;if ax>bx then jump to l5 jg l5 sub ax,bx ;else ax-bx mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l3 l5: ;if(-)ax>(-)bx xchg ax,bx ;exchange ax and bx sub ax,bx ;ax-bx mov diff,ax ;ans is positive jmp l2 l6: ;iff (-)bx neg bx ;-bx=bx add ax,bx ;ax-(-)bx mov diff,ax ;ans will be positive mov ah,4ch int 21h main endp