The coordinates of the image are typically related to the coordinates of the preimage through a specific transformation, which can include translations, rotations, reflections, or dilations. For example, if a transformation is defined by a function or a matrix, the coordinates of the image can be calculated by applying that function or matrix to the coordinates of the preimage. Thus, the relationship depends on the nature of the transformation applied.
The three types of dilations are an enlarged image (the image is larger than the preimage), a reduced image (the image is smaller than the preimage) and an equal image (the image is the same size as the preimage).
similar
To determine the coordinates of the image produced by a composition of transformations, you'll need to apply each transformation step-by-step to the original coordinates. Start with the first transformation, apply it to the coordinates, and then take the resulting coordinates and apply the next transformation. The final coordinates after all transformations will give you the image's location. If specific transformations and original coordinates are provided, I can give a more precise answer.
A translation of shape on the coordinated grid moves it in the same distance and in the same direction
R'
The three types of dilations are an enlarged image (the image is larger than the preimage), a reduced image (the image is smaller than the preimage) and an equal image (the image is the same size as the preimage).
A preimage is a transformed irritated or changed image. Such as a flipped triangle
true
The answer is in the question! The orientation is the same as the preimage! Same = Not different.
Yup
perpendicular bisector
answer
answer
no
A translation
up
false