Here are some examples. x1/2 = square root of x; x1/3 = cubic root of x; in general, x1/n = nth root of x. Also, x2/3 = the square of the cubic root of x, or equivalently, the cubic root of the square of x.
Chat with our AI personalities
Math
Fractional exponents follow the same rules as integral exponents. Integral exponents are numbers raised to an integer power.
1/n
Note that most of the laws for exponents are equally valid for negative, and fractional, exponents. In part, that is because negative and fractional exponents are DEFINED so that those laws continue being valid.Using "^" for power, and "*" for multiplication, some of the fundamental rules are: a^b * a^c = a^(b+c) a^b / a^c = a^(b-c) (a^b)^c = a^(bc) a^c * b^c = (ab)^c All of these are valid for any real exponent - including negative and fractional numbers.
It certainly has a meaning. It is only meaningless if you consider powers as repeated multiplication; but the "extended" definition, for negative and fractional exponents, makes a lot of sense, and it is regularly used in math and science.