I can suggest you look it up. However, you can't know ALL of what pi is, for it is a never-ending and inconstant number. I will, however post a large amount of its numbers:
3.14159265358979323846264338327950288419716939937510582097494459230781 6406286208998628034825342117067982148086513282306647093844609550582231 7253594081284811174502841027019385211055596446229489549303819644288109 7566593344612847564823378678316527120190914564856692346034861045432664 8213393607260249141273724587006606315588174881520920962829254091715364 3678925903600113305305488204665213841469519415116094330572703657595919 5309218611738193261179310511854807446237996274956735188575272489122793 8183011949129833673362440656643086021394946395224737190702179860943702 7705392171762931767523846748184676694051320005681271452635608277857713 4275778960917363717872146844090122495343014654958537105079227968925892 3542019956112129021960864 03441815981362977477130996051870721134999999 8372978049951059731732816096318595024459455346908302642522308253344685 0352619311881710100031378387528865875332083814206171776691473035982534 9042875546873115956286388235378759375195778185778053217122680661300192 7876611195909216420198938095257201065485863278865936153381827968230301 9520353018529689957736225994138912497217752834791315155748572424541506 9595082953311686172785588907509838175463746493931925506040092770167113 9009848824012858361603563707660104710181942955596198946767837449448255 3797747268471040475346462080466842590694912933136770289891521047521620 5696602405803815019351125338243003558764024749647326391419927260426992 2796782354781636009341721641219924586315030286182974555706749838505494 5885869269956909272107975093029553211653449872027559602364806654991198 8183479775356636980742654252786255181841757467289097777279380008164706 0016145249192173217214772350141441973568548161361157352552133475741849 4684385233239073941433345477624168625189835694855620992192221842725502 5425688767179049460165346680498862723279178608578438382796797668145410 0953883786360950680064225125205117392984896084128488626945604241965285 0222106611863067442786220391949450471237137869609563643719172874677646 5757396241389086583264599581339047802759009946576407895126946839835259 5709825822620522489407726719478268482601476990902640136394437455305068 2034962524517493996514314298091906592509372216964615157098583874105978 8595977297549893016175392846813826868386894277415599185592524595395943 1049972524680845987273644695848653836736222626099124608051243884390451 2441365497627807977156914359977001296160894416948685558484063534220722 2582848864815845602850601684273945226746767889525213852254995466672782 3986456596116354886230577456498035593634568174324112515076069479451096 5960940252288797108931456691368672287489405601015033086179286809208747 6091782493858900971490967598526136554978189312978482168299894872265880 4857564014270477555132379641451523746234364542858444795265867821051141 3547357395231134271661021359695362314429524849371871101457654035902799 3440374200731057853906219838744780847848968332144571386875194350643021 8453191048481005370614680674919278191197939952061419663428754440643745 1237181921799983910159195618146751426912397489409071864942319619839101 5919561814675142691239748940907186494231961567945208095146550225231603 8819301420937621378559566389377870830390697920773467221825625996615014 2150306803844773454920260541466592520149744285073251866600213243408819 0710486331734649651453905796268561005508106658796998163574736384052571459102897064140110971206280439 039759515677157700420337869936 007230558763176359421873125147 120532928191826186125867321579 198414848829164470609575270695 722091756711672291098169091528 017350671274858322287183520935 396572512108357915136988209144 421006751033467110314126711136 990865851639831501970165151168 517143765761835155650884909989 859982387345528331635507647918 535893226185489632132933089857 064204675259070915481416549859 4616371802709819943099244889575712828905923233260972997120844335732654 8938239119325974636673058360414281388303203824903758985243744170291327 6561809377344403070746921120191302033038019762110110044929321516084244 4859637669838952286847831235526582131449576857262433441893039686426243 4107732269780280731891544110104468232527162010526522721116603966655730 9254711055785376346682065310989652691862056476931257058635662018558100 7293606598764861179104533488503461136576867532494416680396265797877185 5608455296541266540853061434443185867697514566140680070023787765913440 1712749470420562230538994561314071127000407854733269939081454664645880 7972708266830634328587856983052358089330657574067954571637752542021149 5576158140025012622859413021647155097925923099079654737612551765675135 7517829666454779174501129961489030463994713296210734043751895735961458 901938971311179042978285647503203...
And it goes on forever.
they figured it out by getting the circummference and cutting it in half to figure out the diametre of a circle aka(pi
a 2 dimensional figure with four sides and all four angles =90 degrees= pi/2 radians
Circumference = 2*pi*radius or diameter*pi
The area of any circle = pi*radius2
22 divided by 7 will result in a number very similar to pi.
they figured it out by getting the circummference and cutting it in half to figure out the diametre of a circle aka(pi
a 2 dimensional figure with four sides and all four angles =90 degrees= pi/2 radians
Circumference = 2*pi*radius or diameter*pi
Figure the radius (r=C/2 pi) figure the area (A= pi x r squared). Note - the pi's don't cancel out.
i think you do d x pi
The area of any circle = pi*radius2
22 divided by 7 will result in a number very similar to pi.
d * pi or 2 * r * pi Where d is diameter and r is radius and pi = 3.14159
Perimeter of what? A circle diameter times Pi. Another shape the sum of all sides.
Use the formula for the particular figure
just remember it by 3.14 The best way to remember pi is by memorizing the sentence: "How I wish I could determine of circle round the exact relation Archimede found" The number of letters in each word of this sentence represents one figure of pi. Only the last figure (5) from the word "found" does not correspond to the correct figure of pi in its position.
1/3 [definite integral, interval [3,6]]((pi)r2) 1/3 (((pi)r3)/3) interval [3, 6] 1/3 [ (72(pi) - 9(pi) ] 1/3 [ 63(pi) ] 21pi Sorry about the set-up, could not figure out how to do all of the equations.