Exponential form is ax = b.
Logarithmic form is logab = x.
For example, 102 = 100 is the same as log10100 = 2.
Another example: 53 = 125 is the same as log5125 = 3.
If there is no number under the log (for example, log3), the the number is understood to be ten. For example, log8 is the same as log108.
A natural log uses the symbol ln. In this case, the number is understood to be e (which equals about 2.718). For example, ln5 is the same as loge5 (which the same as log2.7185).
Exponential growth
input
Logarithmic equation
The four types of logarithmic equations are: Simple Logarithmic Equations: These involve basic logarithmic functions, such as ( \log_b(x) = k ), where ( b ) is the base, ( x ) is the argument, and ( k ) is a constant. Logarithmic Equations with Coefficients: These include equations like ( a \cdot \log_b(x) = k ), where ( a ) is a coefficient affecting the logarithm. Logarithmic Equations with Multiple Logs: These involve more than one logarithmic term, such as ( \log_b(x) + \log_b(y) = k ), which can often be combined using logarithmic properties. Exponential Equations Transformed into Logarithmic Form: These equations start from an exponential form, such as ( b^k = x ), and can be rewritten as ( \log_b(x) = k ).
To convert ( a(x-2) ) to logarithmic form, you first need to isolate the expression. If you have an equation of the form ( a(x-2) = b ), you can rewrite it as ( x-2 = \frac{b}{a} ). Then, to express it in logarithmic form, you would take the exponential form ( a^{\log_a(b)} = b ) to find the corresponding logarithmic expression. If you need a specific logarithmic conversion, please clarify the context of ( a(x-2) ).
If y is an exponential function of x then x is a logarithmic function of y - so to change from an exponential function to a logarithmic function, change the subject of the function from one variable to the other.
Logb (x)=y is called the logarithmic form where logb means log with base b So to put this in exponential form we let b be the base and y the exponent by=x Here is an example log2 8=3 since 23 =8. In this case the term on the left is the logarithmic form while the one of the right is the exponential form.
Exponential and logarithmic functions are inverses of each other.
The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)
Exponential growth
No, an function only contains a certain amount of vertices; leaving a logarithmic function to NOT be the inverse of an exponential function.
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.
input
output
No. The inverse of an exponential function is a logarithmic function.
Here's logarithmic form: 1 log ^ 10 Now here's the same thing in exponential form: 10^1 So basically it's just two different ways of writing the same thing. Remember that log is always base "10" unless otherwise specified
The relationship between a logarithmic function and its graph is that the graph of a logarithmic function is the inverse of an exponential function. This means that the logarithmic function "undoes" the exponential function, and the graph of the logarithmic function reflects this inverse relationship.