Convert the base 10 numeral to a numeral in the base indicated. 503 to base 5
In base 11 vs In base 10 10 = 11 20 = 22 30 = 33 So, it is simply dividing whatever value in base 11 by 10 then multiplying it back by 11, but digit by digit. Example, 45 in base 11: 45 = 40 + 5 (still true) = 40/10*11 + 5 (leave the 5 untouched) = 44 + 5 = 49 (in base 10)
131-126 = 5
15
log(5)125 = log(5) 5^(3) = 3log(5) 5 = 3 (1) = 3 Remember for any log base if the coefficient is the same as the base then the answer is '1' Hence log(10)10 = 1 log(a) a = 1 et.seq., You can convert the log base '5' , to log base '10' for ease of the calculator. Log(5)125 = log(10)125/log(10)5 Hence log(5)125 = log(10) 5^(3) / log(10)5 => log(5)125 = 3log(10)5 / log(10)5 Cancel down by 'log(10)5'. Hence log(5)125 = 3 NB one of the factors of 'log' is log(a) a^(n) The index number of 'n' can be moved to be a coefficient of the 'log'. Hence log(a) a^(n) = n*log(a)a Hope that helps!!!!!
To add two numbers in different bases, we first convert them to the same base. In this case, we convert 43 base 5 to base 10, which is 23. Then we convert 24 base 5 to base 10, which is 14. Adding 23 and 14 in base 10 gives us 37. Finally, we convert 37 back to base 5, which is 112. So, 43 base 5 plus 24 base 5 equals 112 base 5.
Convert the base 10 numeral to a numeral in the base indicated. 503 to base 5
131/5 - 10 = 31/5
In base 11 vs In base 10 10 = 11 20 = 22 30 = 33 So, it is simply dividing whatever value in base 11 by 10 then multiplying it back by 11, but digit by digit. Example, 45 in base 11: 45 = 40 + 5 (still true) = 40/10*11 + 5 (leave the 5 untouched) = 44 + 5 = 49 (in base 10)
To convert a number from base 5 to base 10, you multiply each digit by 5 raised to the power of its position from the right, starting at 0. In this case, for the number 43 base 5, you would calculate (4 * 5^1) + (3 * 5^0) = (4 * 5) + (3 * 1) = 20 + 3 = 23 base 10. Thus, 43 base 5 is equal to 23 base 10.
13.2 = 132/10 = 66/5 or 131/5
all factors of 130 are 1, 2, 5, 10, 13, 26, 65, 130
Example: converting 51 from base 8 to base 10. Step 1: base 8 to base 2 Step 2 : base 2 to base 10 first we need convert base 8 to base 2 000 -> 0 001 -> 1 010 -> 2 011 -> 3 100 -> 4 101 -> 5 110 -> 6 111 -> 7 so 5 = 101 1 = 001 so 51 = 101001 now step 2. converting base 2 to base 10 1x25 + ox24 + 1x23+ 0x22 + 0x21 + 1x20 = 41 Answer : 41
I would convert to base 10 , multiply and then convert back to base 6. 35 base 6 is 3 * 6 + 5 = 23 in base ten. 4 * 23 = 92 which is 2*36 + 3* 6 + 2 , in base 6 , the answer is 232 .
2203 in base 10, converted to base 5 is 323032203 in base 5, converted to base 10 is 303.
142120
131-126 = 5