Put the coefficients of the variables into a 3x3 matrix, and take the determinant of the matrix. If the determinant is not zero, then there is one solution. If the determinant is zero, then there are infinite solutions or there is no solution.
Think of a system of 2 variables, for simplicity. You have 2 equations and 2 variables (x & y). Each equation can be graphed as a straight line, hence the name 'linear system'. If the 2 lines are not parallel, then there will be only one point where they intersect, which is the one solution to the linear system. If they are parallel, then there is no solution(they never intersect), and if the two lines coincide, then infinite solutions(they intersect at every point). In both of the latter cases, the related matrix will have a determinant of zero.
A.infinitely manyB.oneD.zero
1
It means that there is no set of values for the variables such that all the linear equations are simultaneously true.
None, one or infinitely many.
Any system of linear equations can have the following number of solutions: 0 if the system is inconsistent (one of the equations degenerates to 0=1) 1 if the system is linearly independent infinity if the system has free variables and is not inconsistent.
A.infinitely manyB.oneD.zero
1
Yes.
No. At least, it can't have EXACTLY 3 solutions, if that's what you mean. A system of two linear equations in two variables can have:No solutionOne solutionAn infinite number of solutions
It means that there is no set of values for the variables such that all the linear equations are simultaneously true.
None, one or infinitely many.
A linear system is a set of equations where each equation is linear, meaning it involves variables raised to the power of 1. Solving a linear system involves finding values for the variables that satisfy all the equations simultaneously. This process is used to find solutions to equations with multiple variables by determining where the equations intersect or overlap.
Any system of linear equations can have the following number of solutions: 0 if the system is inconsistent (one of the equations degenerates to 0=1) 1 if the system is linearly independent infinity if the system has free variables and is not inconsistent.
They are a set of equations in two unknowns such that any term containing can contain at most one of the unknowns to the power 1. A system of linear equations can have no solutions, one solution or an infinite number of solutions.
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
Yes. You can obviously have a set of lines with no common intersection, can't you?
If the system is for more than two variables there will be an infinite number of solutions since only two of the variables can be determined while the rest will be free to take any value. Also, technically, it does not matter what the system is independent of. What matters is that the linear equations are independent of one another.