There is not enough information to give an answer.
You need to know something about the distribution of the variable in the population. It is reasonable to assume that it is Gaussian (Normal)? Secondly, what power do you require of the test statistic? In other words, what level of significance do you require and that, in turn, depends on the "cost" of getting it wrong!
To calculate the standard error for a proportion, you can use the formula: [ SE = \sqrt{\frac{p(1 - p)}{n}} ] where (p) is the sample proportion and (n) is the sample size. If the proportion is not given in your question, you'll need to specify a value for (p) to compute the standard error. For a sample size of 25, substitute that value into the formula along with the specific proportion to find the standard error.
I've included a couple of links. Statistical theory can never tell you how many samples you must take, all it can tell you the expected error that your sample should have given the variability of the data. Worked in reverse, you provide an expected error and the variability of the data, and statistical theory can tell you the corresponding sample size. The calculation methodology is given on the related links.
yes
There is no "ideal" sample size for any given population, because polls and other statistical analysis forms depend on many factors, including what the survey is intended to show, who the target audience is, how much statistical error is permitted, and so on. The "Survey System" link, below, offers definitions and a couple of calculators to determine the best sample size for most purposes.
A confidence interval is calculated using three key elements: the sample mean, the standard deviation (or standard error) of the sample, and the critical value from the relevant statistical distribution (such as the z-score or t-score) corresponding to the desired confidence level. The formula combines these elements to estimate the range within which the true population parameter is expected to lie, given the sample data. This interval provides a measure of uncertainty around the sample estimate.
To calculate the standard error for a proportion, you can use the formula: [ SE = \sqrt{\frac{p(1 - p)}{n}} ] where (p) is the sample proportion and (n) is the sample size. If the proportion is not given in your question, you'll need to specify a value for (p) to compute the standard error. For a sample size of 25, substitute that value into the formula along with the specific proportion to find the standard error.
Standard error A statistical measure of the dispersion of a set of values. The standard error provides an estimation of the extent to which the mean of a given set of scores drawn from a sample differs from the true mean score of the whole population. It should be applied only to interval-level measures. Standard deviation A measure of the dispersion of a set of data from its mean. The more spread apart the data is, the higher the deviation,is defined as follows: Standard error x sqrt(n) = Standard deviation Which means that Std Dev is bigger than Std err Also, Std Dev refers to a bigger sample, while Std err refers to a smaller sample
I've included a couple of links. Statistical theory can never tell you how many samples you must take, all it can tell you the expected error that your sample should have given the variability of the data. Worked in reverse, you provide an expected error and the variability of the data, and statistical theory can tell you the corresponding sample size. The calculation methodology is given on the related links.
Yes.
You cannot from the information provided.
yes
The standard score associated with a given level of significance.
To determine the number of moles in a given sample, you can use the formula: moles mass of sample (in grams) / molar mass of the substance. This formula helps you calculate the amount of substance in terms of moles based on its mass and molar mass.
You can't. You need an estimate of p (p-hat) q-hat = 1 - p-hat variance = square of std dev sample size n= p-hat * q-hat/variance yes you can- it would be the confidence interval X standard deviation / margin of error then square the whole thing
Slovin's formula is a mathematical formula used to determine the sample size needed for a survey or study. It takes into account the population size, desired level of confidence, and margin of error to calculate the appropriate sample size for a given study. It is commonly used in statistics and research to ensure accurate and reliable results.
There is no "ideal" sample size for any given population, because polls and other statistical analysis forms depend on many factors, including what the survey is intended to show, who the target audience is, how much statistical error is permitted, and so on. The "Survey System" link, below, offers definitions and a couple of calculators to determine the best sample size for most purposes.
Molecules in a given sample can be identified through techniques such as spectroscopy, chromatography, and mass spectrometry. These methods analyze the physical and chemical properties of the molecules to determine their identity.