commutative, associative, distributive
Both union and intersection are commutative, as well as associative.
9s2+3t+s2+1
In the case of addition: Commutative property: a + b = b + a Associative property: (a + b) + c = a + (b + c) Note that (1) the commutative property involves two numbers; the associative property involves three; and (2) the commutative property changes the order of the operands; the associative property doesn't. Repeatedly applying the two properties allow you to rearrange an addition that involves several numbers in any order.
No, that's associative.
Subtraction is neither commutative property or association property because commutative property of multiplication is when you change the order of the factors the product stays the same and it isn't associated property because you can change the grouping of the factors the product stays the same you can't do that first attraction it wouldn't work it would be a negative zero.
Commutative Law: a + b = b + a Associative Law: (a + b) + c = a + (b + c)
Nothing. Multiplication is commutative and associative.Nothing. Multiplication is commutative and associative.Nothing. Multiplication is commutative and associative.Nothing. Multiplication is commutative and associative.
No.
Associative
NAND
commutative, associative, distributive
Both union and intersection are commutative, as well as associative.
You need the associative and commutative properties, but not the distributive property. n*4n*9 =n*(4n*9) (associative) = n*(9*4n) (commutative) = n*(36n) (associative) = 36n*n commutative = 36*n^2
No, changing order of vectors in subtraction give different resultant so commutative and associative laws do not apply to vector subtraction.
commutative
distributive