fyfkh,gvhfv
To find out how many 25-gram portions are in 4 kilograms, first convert 4 kilograms to grams: 4 kg is 4000 grams. Then, divide 4000 grams by 25 grams: 4000 ÷ 25 = 160. Therefore, there are 160 portions of 25 grams in 4 kilograms.
25% of 500 grams = 500*25/100 grams = 125 grams.
418.4 grams.
25/175 x 100 = 14.28571 %
48 grams
The molar mass of sodium hydroxide (NaOH) is approximately 40 grams/mol. To find the mass of 25 moles of NaOH, you would multiply the number of moles by the molar mass: 25 mol * 40 g/mol = 1000 grams. So, the mass of 25 moles of sodium hydroxide is 1000 grams.
25 moles of sulfur dioxide contain 600 grams of oxygen. Each mole of SO2 contains 2 moles of oxygen, and the molar mass of O is 16 g/mol. So, 25 moles x 2 moles = 50 moles of O, which is 50 moles x 16 g/mol = 800 g of O.
21.95%
To calculate the number of moles in 25 grams of UF6, first determine the molar mass of UF6 (uranium hexafluoride) by adding the atomic mass of uranium (238.03 g/mol) to six times the atomic mass of fluorine (19.00 g/mol). This gives a molar mass of 238.03 + (6 * 19.00) = 352.03 g/mol. Next, divide the given mass of 25 grams by the molar mass to find the number of moles: 25 g / 352.03 g/mol ≈ 0.071 moles. Therefore, there are approximately 0.071 moles in 25 grams of UF6.
Sr is 87.6g/mol, and 25/87.6 = 0.285 moles.
800 g oxygen are needed.
4.25 grams. .050 M = .050 mol/1 L 5.0 L x .050 mol/L (cancel out L to get mol as a unit)= .25 mol Atomic mass of Ammonia (NH3)= 17 g/mol .25 mol x 17 g/mol (cancel out mol to get g as a unit)= 4.25 g
The molar mass of tungsten (W) is approximately 183.84 g/mol. To find the mass of 6.64 mol of tungsten, you would multiply the number of moles by the molar mass: 6.64 mol W x 183.84 g/mol = 1220.3 g of tungsten.
To find the mass of 1.20x10^25 atoms of sulfur, you need to calculate the molar mass of sulfur and then convert the number of atoms to moles. The molar mass of sulfur is 32.06 g/mol. Once you have the number of moles, you can multiply it by the molar mass to find the mass of 1.20x10^25 atoms of sulfur.
The molar mass of calcium carbonate (CaCO3) is 100.09 g/mol. To find the mass of 0.250 mol of calcium carbonate, you would multiply the number of moles by the molar mass: 0.250 mol x 100.09 g/mol = 25.02 grams of calcium carbonate.
The density of sulfur in grams/cm3 is 2.070. (not at twenty five degrees Celsius)
To find the mass in grams of 1.20x10^25 molecules of ammonia (NH3), you first calculate the molar mass of NH3 (17.031 g/mol). Then, divide the given number of molecules by Avogadro's number (6.022x10^23 molecules/mol) to find the number of moles, and finally, multiply the number of moles by the molar mass to get the mass in grams, which will be approximately 4.08x10^2 grams.