107 unique handshakes will be exchanged
This is a variation on the handshake problem which say if there are n people at a party and every one shakes hands with every other one, how many handshakes are there? It is well know that kisses in fact are cleaner than handshakes which to tend to pass diseases. So thanks for a cleaner version of this classic math problem! n(n-1)/2 is the formula for the number of handshakes OR kisses for n people at a party. If you case, 15x14/2 which is 15x7 or 105.
If you multiply anything by 2 it always comes out even. So if people make 35 handshakes, we multiply it by 2 and we get 70 people. This will work with any different number of handshakes, odd or even.
The answer is 15 people. Each shook hands with 14 others, and there are half that many handshakes (pairs). The total number of pairs (distinct handshakes) within the group is defined by the formula T = [n!/(n-2)!] /2 Given T = 105 we get n!/(n-2)!=210 which implies n(n-1)=210 on solving we get n=15
15 (15 * 15 - 15)/2 = 105
107 unique handshakes will be exchanged
So, there will be 3 handshakes among the 3 people at the party.
There will be 28 handshakes. If you ask each person how many handshakes they had they will tell you 7 making 7 x 8 = 56 handshakes in all. But every hand involves two people, so every handshake has been counted twice, thus there are 56 / 2 = 28 handshakes in all.
If that happens you have to times ninexten and the answer would be 90 handshakes
21 handshakes
29 People including You.
There were ten people at the party. This is a triangular sequence starting with two people: 1, 3, 6, 10, 15, 21, 28, 36, 45, etc. There's an equation for this. With n people at the party, the number of handshakes is n(n-1)/2.
Ah, what a lovely thought! When each person shakes hands with every other person at the party, it creates a beautiful connection. In this case, with 3 people at the party, there will be 3 handshakes in total. Just imagine the joy and warmth shared in those simple gestures!
371
This is a variation on the handshake problem which say if there are n people at a party and every one shakes hands with every other one, how many handshakes are there? It is well know that kisses in fact are cleaner than handshakes which to tend to pass diseases. So thanks for a cleaner version of this classic math problem! n(n-1)/2 is the formula for the number of handshakes OR kisses for n people at a party. If you case, 15x14/2 which is 15x7 or 105.
Sixty-six unique, distinct handshakes.
38