Suppose you have a function f, of a variable X.
You select a value for X, say x. Calculate the value of f(x) that is, the value of the function when X takes that value x. Then, instead of writing the result in a table, mark the point [x, f(x)] on the coordinate plane. Repeat with other values for X and join up the points.
rule, table of values and graph
The graph of a continuous function will not have any 'breaks' or 'gaps' in it. You can draw it without lifting your pencil or pen. The graph of a discrete function will just be a set of lines.
y=x+1
Data is neither a table nor a graph, however, data may be presented in a table or depicted by a graph.
If you are looking at a graph and you want to know if a function is continuous, ask yourself this simple question: Can I trace the graph without lifting my pencil? If the answer is yes, then the function is continuous. That is, there should be no "jumps", "holes", or "asymptotes".
rule, table of values and graph
The graph of a continuous function will not have any 'breaks' or 'gaps' in it. You can draw it without lifting your pencil or pen. The graph of a discrete function will just be a set of lines.
a graph where a function is described without using specific values
Table Graph
y=x+1
You can use a table or a graph to organize you findings.
In general you cannot. Any set of ordered pairs can be a graph, a table, a diagram or relation. Any set of ordered pairs that is one-to-one or many-to-one can be an equation, function.
Data is neither a table nor a graph, however, data may be presented in a table or depicted by a graph.
If you are looking at a graph and you want to know if a function is continuous, ask yourself this simple question: Can I trace the graph without lifting my pencil? If the answer is yes, then the function is continuous. That is, there should be no "jumps", "holes", or "asymptotes".
Input/output table, description in words, Equation, or some type of graph
No, a circle graph is never a function.
The relationship between a logarithmic function and its graph is that the graph of a logarithmic function is the inverse of an exponential function. This means that the logarithmic function "undoes" the exponential function, and the graph of the logarithmic function reflects this inverse relationship.