Cartestian plane
In general the function and it inverse are not the same and do not have the same graph. If we look at a special function f(x)=x, it is equal to its inverse and the graph is the same. Think of the inverse of a function as changing all the x's to y's and vice versa. Well, in the function f(x)=x, all the x's are already y's and vice versa so it is its own invese.
The graph of the function y(x) = 1/x is a hyperbola.
Arcsin
Direct
A hyperbola.
Inverse variation does not pass through the origin, however direct variation always passes through the origin.
Cartestian plane
In general the function and it inverse are not the same and do not have the same graph. If we look at a special function f(x)=x, it is equal to its inverse and the graph is the same. Think of the inverse of a function as changing all the x's to y's and vice versa. Well, in the function f(x)=x, all the x's are already y's and vice versa so it is its own invese.
The graph of the function y(x) = 1/x is a hyperbola.
The output is doubled.
Arcsin
Direct
The output is tripled.
the output is divided by 3.
Graph that equation. If the graph pass the horizontal line test, it is an inverse equation (because the graph of an inverse function is just a symmetry graph with respect to the line y= x of a graph of a one-to-one function). If it is given f(x) and g(x) as the inverse of f(x), check if g(f(x)) = x and f(g(x)) = x. If you show that g(f(x)) = x and f(g(x)) = x, then g(x) is the inverse of f(x).
The output is multiplied by 5.