There is no easy way.
You need to prove that for any pair of points A and B in the set S, the point C = A + mB is in S for 0 ≤ m ≤ 1.
Chat with our AI personalities
well-defined sets are sets that can identify easily while not well-defined are those that cannot determined easily :)
Why is it important to be able to identify sets and set theory as related to business operations?
The proof of this theorem is by contradiction. Suppose for convex sets S and T there are elements a and b such that a and b both belong to S∩T, i.e., a belongs to S and T and b belongs to S and T and there is a point c on the straight line between a and b that does not belong to S∩T. This would mean that c does not belong to one of the sets S or T or both. For whichever set c does not belong to this is a contradiction of that set's convexity, contrary to assumption. Thus no such c and a and b can exist and hence S∩T is convex.
a polygon is convex
A non convex is a concave and a convex is differently shaped