answersLogoWhite

0


Best Answer

To make a natural log a log with the base of 10, you take ten to the power of you natural log.

Ex:

ln15=log10ln15=log510.5640138

I'm sorry if you don't have a calculator that can do this, but this will work.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you make natural log to log with base of 10?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What number has a log of 8.0573-10?

18.057299999999998


What 100 is to 2 in base 10?

natural log


What is the logarithm of 1.0882?

Ever heard of calculator?? log to base 10 = 0.0367087, natural log, 0.08452495


What is log 100 base e?

log 100 base e = log 100 base 10 / log e base 10 log 100 base 10 = 10g 10^2 base 10 = 2 log 10 base 10 = 2 log e base 10 = 0.434294 (calculator) log 100 base e = 2/0.434294 = 4.605175


In the continuous compounding equation e is the natural log to the base 10?

A "natural logarithm" is a logarithm to the base e, notto the base 10. Base 10 is sometimes called "common logarithm". The number e is approximately 2.71828.


What is full form of LOG?

"Log" is short for Logarithm and can be to any base.The Logarithm of a number is the number to which the base has to be raised to get that number; that is why there are no logarithms for negative numbers. For example: 10² = 100 → log to base 10 of 100 is 2.There are two specific abbreviations:lg is the log to base 10ln is the log to base e - e is Euler's number and is approximately 2.71828184; logs to base e are known as natural logs.On an electronic calculator the [log] button takes logarithms to base 10. The inverse function (anti-log) is marked as 10^x.Similarly the [ln] button takes logs to base e, with the inverse function marked as e^x.


Differentiate log x?

The derivative of ln x, the natural logarithm, is 1/x.Otherwise, given the identity logbx = log(x)/log(b), we know that the derivative of logbx = 1/(x*log b).ProofThe derivative of ln x follows quickly once we know that the derivative of ex is itself. Let y = ln x (we're interested in knowing dy/dx)Then ey = xDifferentiate both sides to get ey dy/dx = 1Substitute ey = x to get x dy/dx = 1, or dy/dx = 1/x.Differentiation of log (base 10) xlog (base 10) x= log (base e) x * log (base 10) ed/dx [ log (base 10) x ]= d/dx [ log (base e) x * log (base 10) e ]= [log(base 10) e] / x= 1 / x ln(10)


How do you use log of a number?

If a^b=c, then log(base a) of c = b. For example, if 10^3 = 1000, the log(base 10) of 1000 = 3. The natural logarithm 'ln' uses the constant 'e' as a base, which is approximately 2.71828183. So, if e^6 = x, then ln(x) = 6.


Solve ln y equals xln e?

ln is the natural logarithm. That is it is defined as log base e. As we all know from school, log base 10 of 10 = 1 just as log base 3 of 3 = 1, so, likewise, log base e of e = 1 and 1.x = x. so we have ln y = x. Relace ln with log base e, and you should get y = ex


Why is log i 0.682i Where i is the imaginary number sqr rt -1?

By Euler's formula, e^ix = cosx + i*sinx Taking natural logarithms, ix = ln(cosx + i*sinx) When x = pi/2, i*pi/2 = ln(i) But ln(i) = log(i)/log(e) where log represents logarithms to base 10. That is, i*pi/2 = log(i)/log(e) And therefore log(i) = i*pi/2*log(e) = i*0.682188 or 0.682*i to three decimal places.


What is the log of infinite to the base 10?

The log of infinity, to any base, is infinity.


What is log base 5of 125?

log(5)125 = log(5) 5^(3) = 3log(5) 5 = 3 (1) = 3 Remember for any log base if the coefficient is the same as the base then the answer is '1' Hence log(10)10 = 1 log(a) a = 1 et.seq., You can convert the log base '5' , to log base '10' for ease of the calculator. Log(5)125 = log(10)125/log(10)5 Hence log(5)125 = log(10) 5^(3) / log(10)5 => log(5)125 = 3log(10)5 / log(10)5 Cancel down by 'log(10)5'. Hence log(5)125 = 3 NB one of the factors of 'log' is log(a) a^(n) The index number of 'n' can be moved to be a coefficient of the 'log'. Hence log(a) a^(n) = n*log(a)a Hope that helps!!!!!