equilibrant
vector equal in magnitude and opposite direction
you fail in grade 11 physics
its solve easy
to solve them you have to do stagigys
Use pythagorean theorem to get the magnitude of the resultant force… The fourth force that would put this arrangement in equilibrium (the equilibrant) is equal and opposite the resultant. The components work this way too. To get the opposite direction angle, add on 180°.
The force is said to be "equilibrant" when acting with other forces it would keep the body at rest ie in equilibrium. Hence equilibrant would be equal in magnitude but opposite in direction to the resultant of all the forces acting on the body.
equilibriant force
equilibrant
Resultant force is a system of forces in the single force equivalent to the system, whilst equilibrant force is a force capable of balancing another force to achieve equilibrium.
Resultant force is a system of forces in the single force equivalent to the system, whilst equilibrant force is a force capable of balancing another force to achieve equilibrium.
vector equal in magnitude and opposite direction
The resultant is a trigonometric function, usually using the Law of Cosines in two dimensional solution by vector resolution, of two or more known forces while equilibrant is equal in magnitude to the resultant, it is in the opposite direction because it balances the resultant.Therefore, the equilibrant is the negative of the resultant.
A resultant vector is the single vector that represents the combined effect of multiple vectors. It is obtained by adding together all the individual vectors. An equilibrant vector is a single vector that, when added to the other vectors in the system, produces a net result of zero, effectively balancing out the other vectors.
the answer is 13lb south of west since the resultant is 13lb north of east. in getting the equilibrant force, just copy the resultant and reverse the direction. then that's it. .
The equilibrant is a force that exactly balances the net force acting on an object, resulting in a state of equilibrium where the object is not accelerating. It is equal in magnitude but opposite in direction to the net force, effectively cancelling it out.
Equilibrant vector is the opposite of resultant vector, they act in opposite directions to balance each other.