Yes, sine is a trig function, it is opposite over hypotenuse.
well, the second derivative is the derivative of the first derivative. so, the 2nd derivative of a function's indefinite integral is the derivative of the derivative of the function's indefinite integral. the derivative of a function's indefinite integral is the function, so the 2nd derivative of a function's indefinite integral is the derivative of the function.
A null derivative occurs when an increasing function does not have a derivative. This is most commonly seen in the question mark function.
The Geometrical meaning of the second derivative is the curvature of the function. If the function has zero second derivative it is straight or flat.
A linear function, for example y(x) = ax + b has the first derivative a.
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2
Yes, sine is a trig function, it is opposite over hypotenuse.
well, the second derivative is the derivative of the first derivative. so, the 2nd derivative of a function's indefinite integral is the derivative of the derivative of the function's indefinite integral. the derivative of a function's indefinite integral is the function, so the 2nd derivative of a function's indefinite integral is the derivative of the function.
To get the second derivative of potential energy, you first need to calculate the first derivative of potential energy with respect to the variable of interest. Then, you calculate the derivative of this expression. This second derivative gives you the rate of change of the slope of the potential energy curve, providing insight into the curvature of the potential energy surface.
Take the derivative of the function.
3
All six trigonometric functions can take the value 1.
The only trig functions i can think of with horizontal assymptotes are the inverse trig functions. and they go assymptotic for everytime the non-inverse function is equal to zero.
You take the derivative using only one variable. The other variables act as constants.
You can differentiate a function when it only contains one changing variable, like f(x) = x2. It's derivative is f'(x) = 2x. If a function contains more than one variable, like f(x,y) = x2 + y2, you can't just "find the derivative" generically because that doesn't specify what variable to take the derivative with respect to. Instead, you might "take the derivative with respect to x (treating y as a constant)" and get fx(x,y) = 2x or "take the derivative with respect to y (treating x as a constant)" and get fy(x,y) = 2y. This is a partial derivative--when you take the derivative of a function with many variable with respect to one of the variables while treating the rest as constants.
A null derivative occurs when an increasing function does not have a derivative. This is most commonly seen in the question mark function.
You take the derivative of the function. The derivative is another function that tells you the slope of the original function at any point. (If you don't know about derivatives already, you can learn the details on how to calculate in a calculus textbook. Or read the Wikipedia article for a brief introduction.) Once you have the derivative, you solve it for zero (derivative = 0). Any local maximum or minimum either has a derivative of zero, has no defined derivative, or is a border point (on the border of the interval you are considering). Now, as to the intervals where the function increase or decreases: Between any such maximum or minimum points, you take any random point and check whether the derivative is positive or negative. If it is positive, the function is increasing.