Let the fraction be q; then:
{1} q = 0.111...
Multiply both sides by 10:
{2} 10q = 1.111...
Subtract {1} from {2} to get:
10q - q = 1.111... - 0.111...
→ 9q = 1
→ q = 1/9
Therefore 0.111... = 1/9
--------------------------------------
To convert any repeating decimal to a fraction:
The fraction created may not be a "proper" fraction with a decimal in the numerator; this is not a problem: multiply top and bottom by the required power of 10 to remove the decimal point and then simplify as normal
For 0.181818... this gives:
Thus 0.181818... = 2/11
For 0.1666... this gives:
Thus 0.1666... = 1/6
Chat with our AI personalities
decimal and repeating bar
If all three digits are repeating then as a fraction it is 41/333 in its simplest form
113/999
It is 1 5/9.
0.78 repeating as a fraction = 78/99