answersLogoWhite

0


Best Answer

The longer the pendulum is, the greater the period of each swing. If you increase the length four times, you will double the period.

It is hard to notice, but the period of a pendulum does depend on the angle of oscillation. For small angles, the period is constant and depends only on the length of the pendulum. As the angle of oscillation (amplitude) is increased, additional factors of a Taylor approximation become important. (T=2*pi*sqrt(L/g)[1+theta^2/16+...] and the period increases. (see hyper physics: http://hyperphysics.phy-astr.gsu.edu/hbase/pendl.html)

Interestingly, if the pendulum is supported by a very light wire then the mass of the object at the end of the pendulum does not affect the period. Obviously, the greater the mass, the less any air friction or friction at the pivot will slow the pendulum. Also interestingly, the pendulum period is dependant on the force of gravity on the object (g). One must not assume that g is constant for all places on Earth.

User Avatar

Wiki User

16y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How does length and initial angle affect the period in a simple pendulum?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

List 3 things that you could changemanipulate about a pendulum?

Adjust the length of the pendulum: Changing the length will alter the period of the pendulum's swing. Adjust the mass of the pendulum bob: Adding or removing weight will affect the pendulum's period. Change the initial angle of release: The angle at which the pendulum is released will impact its amplitude and period.


How does the length affect pendulum in a period?

The period of a pendulum is independent of its length. The period is determined by the acceleration due to gravity and the length of the pendulum does not affect this relationship. However, the period of a pendulum may change if the amplitude of the swing is very wide.


How do the parameters of a simple pendulum affect the period of a pendulum?

The period increases as the square root of the length.


Does length of the pendulum affect its period?

Technically and mathematically, the length is the onlything that affects its period.


What variables affect the swing of a pendulum?

The variables that affect the swing of a pendulum are its length, mass, and the amplitude of its initial displacement. A longer pendulum will have a slower swing rate, while a heavier mass will also affect the period of oscillation. Amplitude plays a role in determining the maximum speed of the pendulum swing.


Does the length of pendulum affect the period of vibration?

Yes. Given a constant for gravity, the period of the pendulum is a function of it's length to the center of mass. In a higher gravity, the period would be shorter for the same length of pendulum.


What effect does the mass has on the period of oscillation of the pendulum?

The mass of a pendulum does not affect its period of oscillation. The period of a pendulum is determined by its length and the acceleration due to gravity. This means that pendulums with different masses but the same length will have the same period of oscillation.


Why does the mass of pendulum not affect its period?

The period of a pendulum is influenced by the length of the pendulum and the acceleration due to gravity. The mass of the pendulum does not affect the period because the force of gravity acts on the entire pendulum mass, causing it to accelerate at the same rate regardless of its mass. This means that the mass cancels out in the equation for the period of a pendulum.


Does the length of the pendulum affect the number of cycles?

no. it affects the period of the cycles.


How does the period of a pendulum change for length?

The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.


How does length affect a pendulum?

The length of a pendulum directly affects its period, or the time it takes to complete one full swing. A longer pendulum will have a longer period, while a shorter pendulum will have a shorter period. This relationship is described by the formula T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


What property of a pendulum does not affect its period?

The mass of the pendulum does not affect its period. The period of a pendulum is only affected by the length of the pendulum and the acceleration due to gravity.