60 degrees
You find the arc measure and then you divide it in half to find the inscribed angle
72
108 ;)
108 degrees
60 degrees
Answer this question… half
The lengthÊof an inscribed angle placed in a circle based on on the measurement of a intercepted arc is called a Theorem 70. The formula is a m with a less than symbol with a uppercase C.
That will depend on the circumference of the circle which has not been given
2-over 2 x x9
An InAn Inscribed Angle'svertex lies somewhere on the circlesides are chords from the vertex to another point in the circlecreates an arc , called an intercepted arcThe measure of the inscribed angle is half of measure of the intercepted arcscribed Angle'sAn Inscribed Angle's vertex lies somewhere on thecirclesides arechordsfrom the vertex to another point in thecirclecreates anarc, callFormula: ABC =½ed an interceptedarcThe measure of the inscribed angle is half of measurevertex lies somewhere on thecirclesides arechordsfrom the vertex to another point in thecirclecreates anarc, called an interceptedarcThe measure of the inscribed angle is half of measure of
102.8 degrees I think but it depends. If the angle is a central angle it is 51.4 degrees but other than that I think it would be 102.8 degrees.
The answer is half the measure, 62°. Have a nice day!
False. There are infinitely many angles at the centre of the circle.
You find the arc measure and then you divide it in half to find the inscribed angle
A sector is the area enclosed by two radii of a circle and their intercepted arc, and the angle that is formed by these radii, is called a central angle. A central angle is measured by its intercepted arc. It has the same number of degrees as the arc it intercepts. For example, a central angle which is a right angle intercepts a 90 degrees arc; a 30 degrees central angle intercepts a 30 degrees arc, and a central angle which is a straight angle intercepts a semicircle of 180 degrees. Whereas, an inscribed angle is an angle whose vertex is on the circle and whose sides are chords. An inscribed angle is also measured by its intercepted arc. But, it has one half of the number of degrees of the arc it intercepts. For example, an inscribed angle which is a right angle intercepts a 180 degrees arc. So, we can say that an angle inscribed in a semicircle is a right angle; a 30 degrees inscribed angle intercepts a 60 degrees arc. In the same or congruent circles, congruent inscribed angles have congruent intercepted arcs.
An inscribed angle is an angle formed by two chords in a circle which have a common endpoint. This common endpoint forms the vertex of the inscribed angle.The other two endpoints define an intercepted arc on the circle Any angle inscribed in a semi-circle is a right angle. The proof is simply that the intercepted arc is 180 so the angle must be half of that or 90 degrees.