Q: How long have the Fibonacci numbers been around for?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

They have always been around

The Fibonacci series starts with 1, 1, 2, 3, 5, 8, ... Each number is the sum of the previous two numbers. You can easily continue adding (you might put a formula in Excel, and copy it), but you quickly reach very, very large numbers - long before the 10,000th. term.

The golden ratio has been around forever, but people did not discover it until around the time of the early Egyptians.

Negative numbers do not naturally occur in the Fibonacci sequence. The sequence begins with 0 and 1, and each subsequent term is obtained by summing the two preceding terms. If negative numbers seem to be appearing after 23 terms, it is likely due to a mistake or misinterpretation in the calculation or observation.

A very long time, it was used to design the Pyramids and Stonehenge

Related questions

They have always been around

They have always been around

a sequence of numbers created a long time ago by Fibonacci. They can be worked with a lot and have lots of different patterns associated with them...

The Fibonacci sequence was well known in ancient India, where it was applied to the metrical sciences (prosody), long before it was known in Europe. Developments have been attributed to Pingala (200 BC), Virahanka (6th century AD), Gopāla (c.1135 AD), and Hemachandra (c.1150 AD

He lived [Fibonacci(10) + Fibonacci(8) + Fibonacci(6)] years

Here is a good answer for recursion Fibonacci series. #include <stdio.h> #include <conio.h> long Fibonacci(long n); int main() { long r, n,i; printf("Enter the value of n: "); scanf("%ld",&n); for(i=0;i<=n;i++) { printf(" Fibonacci(%ld)= %ld\n", i,Fibonacci(i)); } getch(); return 0; } long Fibonacci(long n) { if(n==0 n==1) return n; else { return (Fibonacci(n-1)+Fibonacci(n-2)); } } for n=5; Output: Fibonacci(0)=0 Fibonacci(1)=1 Fibonacci(2)=1 Fibonacci(3)=2 Fibonacci(4)=3 Fibonacci(5)=5

The Fibonacci series starts with 1, 1, 2, 3, 5, 8, ... Each number is the sum of the previous two numbers. You can easily continue adding (you might put a formula in Excel, and copy it), but you quickly reach very, very large numbers - long before the 10,000th. term.

Fibonacci was a 19 cent. Italian Naturalist who first Defined the Fibonacci Sequence as a series of whole numbers where each integer is the sum of the two preceeding integers. example 1 1 2 3 5 8 13 21 34 55 etc. to infinity. All Spirals conform to the proportions defined by the Fibonacci Sequence.

Use a lookup table. The first two elements are 0 and 1 and each subsequent element is the sum of the preceding two elements. The table needn't be very large as there are only 43 Fibonacci numbers in the range 0 to 1 billion. If you need larger numbers, use long doubles.

The Fibonacci numbers are a sequence of numbers named after Leonardo of Pisa, known as Fibonacci (a contraction of filius Bonaccio, "son of Bonaccio"). Fibonacci's 1202 book Liber Abaci introduced the sequence to Western European mathematics, as an example, although the sequence had been previously described in Indian mathematics.The Fibonacci numbers first appeared, under the name mātrāmeru (mountain of cadence), in the work of the Sanskrit grammarian Pingala (Chandah-shāstra, the Art of Prosody, 450 or 200 BC). Prosody was important in ancient Indian ritual because of an emphasis on the purity of utterance. The Indian mathematician Virahanka (6th century AD) showed how the Fibonacci sequence arose in the analysis of metres with long and short syllables. Subsequently, the Jain philosopher Hemachandra (c.1150) composed a well known text on these. A commentary on Virahanka by Gopala in the 12th c. also revisits the problem in some detail.Source:http://www.nationmaster.com/encyclopedia/Tetranacci-number

how long has deforestation been around

As long as guns have been around.