9,999 if zeroes can be used than it would be 10,999
It is 415968.
The four digits can be used to produce infinitely many different numbers if repetition is permitted. Without repetition, there are 24 possible numbers. A lot more can be produced if the numbers are combined using binary oprations, fore example, 19 * 8/4 = 19*2 = 38.
To calculate the number of four-digit numbers that can be made using the digits 1, 4, 5, and 9 without repetition, we use the permutation formula. Since there are 4 digits to choose from for the first digit, 3 for the second, 2 for the third, and 1 for the fourth, the total number of permutations is 4 x 3 x 2 x 1 = 24. Therefore, there are 24 different four-digit numbers that can be formed using the digits 1, 4, 5, and 9 without repetition.
This is permutations with repetition. The answer is 4^4 = 256 total permutations. Since 2 of the digits used are odd (and 2 are even), then half of the possibilities will be odd: 128 odd numbers.
The four-digit numbers that can be formed using the digits 6, 7, 8, and 9, without repetition, are all the permutations of these four digits. There are 24 possible combinations, including numbers like 6789, 6798, 6879, and so on. Essentially, any arrangement of these four digits constitutes a valid four-digit number.
It is 415968.
The four digits can be used to produce infinitely many different numbers if repetition is permitted. Without repetition, there are 24 possible numbers. A lot more can be produced if the numbers are combined using binary oprations, fore example, 19 * 8/4 = 19*2 = 38.
5040
None.
Time, proximity, volume, and repetition
1
To calculate the number of four-digit numbers that can be made using the digits 1, 4, 5, and 9 without repetition, we use the permutation formula. Since there are 4 digits to choose from for the first digit, 3 for the second, 2 for the third, and 1 for the fourth, the total number of permutations is 4 x 3 x 2 x 1 = 24. Therefore, there are 24 different four-digit numbers that can be formed using the digits 1, 4, 5, and 9 without repetition.
If repetition is allowed and order is important, then you have essentially a base-4 number system, with the numbers ranging from 00004 to 33334. The quantity of permutations in this example is 44 = 256. If repetition is not allowed, but order is important, then it is 4! = 24. * * * * * The above answer is perfectly correct. But, as stated in the answer, for permutations. However, according to the mathematical definition of combinations (as opposed to permutations), the order is irrelevant to combinations. 1234 is the same as 1423 or 4213 etc. Consequently, there can be only one 4-number combination from 4 numbers
This is permutations with repetition. The answer is 4^4 = 256 total permutations. Since 2 of the digits used are odd (and 2 are even), then half of the possibilities will be odd: 128 odd numbers.
the least number is 210 which is divisible by four different prime numbers.
If all letters and numbers are allowed, the possibilities are 26x26x10x10x10x10. So: 6760000 different plates.
Assume that the question is really looking for an "odd" number, (not an "old" number).Then it's [ 1001 ].