Assume you have 6 spots shown below:
_ _ _ _ _ _
In the first spot, you have 6 letters to choose from. In the second spot, you have 5 letters to choose from because you already used one. Similarly, in the remaining spots, you will have 4, 3, 2, and 1 letters to choose from. So you have 6 choices * 5 choices * 4 choices * 3 choices * 2 choices * 1 choice = 720 possibilities
The number of different ways you can arrange the letters MNOPQ is the number of permutations of 5 things taken 5 at a time. This is 5 factorial, or 120.
The word "house" has 5 distinct letters. The number of ways to arrange these letters is calculated using the factorial of the number of letters, which is 5! (5 factorial). This equals 5 × 4 × 3 × 2 × 1 = 120. Therefore, there are 120 different ways to arrange the letters in the word "house."
6
The nine letters in chocolate can be rearranged in 362,880 different ways.
The word "MATH" consists of 4 unique letters. The number of different arrangements of these letters can be calculated using the factorial of the number of letters, which is 4!. Therefore, the total number of arrangements is 4! = 4 × 3 × 2 × 1 = 24. Thus, there are 24 different ways to arrange the letters in the word "MATH."
The number of different ways you can arrange the letters MNOPQ is the number of permutations of 5 things taken 5 at a time. This is 5 factorial, or 120.
The word "monkey" consists of 6 distinct letters. The number of ways to arrange these letters is given by the factorial of the number of letters, which is 6!. Calculating this, we find that 6! = 720. Therefore, there are 720 different ways to arrange the letters in "monkey."
There are 10 letters is the word JOURNALISM. Since they are all different, the number of ways you can arrange them is simply the number of permutations of 10 things taken 10 at a time, or 10 factorial, or 3,628,800.
The word "house" has 5 distinct letters. The number of ways to arrange these letters is calculated using the factorial of the number of letters, which is 5! (5 factorial). This equals 5 × 4 × 3 × 2 × 1 = 120. Therefore, there are 120 different ways to arrange the letters in the word "house."
There are 4 distinguishable letters in the word fish, so there is 4! or 24 different ways can you arrange the letters in the word fish.
There are six different ways to arrange the letters XYZ... XYZ XZY YXZ YZX ZXY ZYX
6
No.
The nine letters in chocolate can be rearranged in 362,880 different ways.
The word "MATH" consists of 4 unique letters. The number of different arrangements of these letters can be calculated using the factorial of the number of letters, which is 4!. Therefore, the total number of arrangements is 4! = 4 × 3 × 2 × 1 = 24. Thus, there are 24 different ways to arrange the letters in the word "MATH."
There are 30 ways.
Six.