There is only one 2s orbital in an atom.
the 1s orbital is closer to the nucleus and has a lower energy level compared to the 2s orbital. Additionally, the 2s orbital has a slightly higher energy, larger size, and can hold more electrons than the 1s orbital.
The 2s orbital is larger than the 1s orbital and is higher in energy.
The 2s orbital can hold a maximum of 2 electrons.
The 2s orbital and 3s orbital both have the same spherical shape and can hold a maximum of two electrons of opposite spin. They only differ because the 3s orbital is further out from the nucleus than the 2s orbital, thus the 3s orbital has a higher energy value.
A 3s orbital is associated with more energy than a 2s orbital. This is because the principal quantum number (n) is higher for the 3s orbital compared to the 2s orbital, resulting in higher energy levels.
The main difference between a 2s orbital and a 3s orbital is their energy levels. A 3s orbital is at a higher energy level than a 2s orbital. Additionally, the 3s orbital has a larger size and higher probability of finding an electron farther from the nucleus compared to a 2s orbital.
In lithium, the orbital of highest relative energy is the 2s orbital. This is due to the fact that, in the electron configuration of lithium (1s^2 2s^1), the 2s orbital is farther from the nucleus compared to the 1s orbital, resulting in higher energy.
An electron is transferred from the 2s orbital of lithium to form a Li ion. This results in the formation of a Li+ ion with a filled 1s and empty 2s orbital.
In a silicon atom, there are four filled orbitals. Specifically, there are two filled in the 1s orbital and two filled in the 2s orbital.
1s and 2s orbitals differ in that 2s orbitals lie farther away from the nucleus in the next principle energy level. Other than that, they occupy the same shape of orbital, spherical, as indicated by the s.
An electron is transferred from the 2s orbital of a lithium atom to create a Li+ ion.