To determine how many rectangular prisms can be made from 140 cubes, we need to consider the volume of the prisms, which is given by the formula ( V = l \times w \times h ) (length × width × height). The task involves finding all combinations of positive integers ( l ), ( w ), and ( h ) such that their product equals 140. The number of distinct rectangular prisms is equal to the number of unique factorizations of 140 into three positive integers, which can vary based on the order of dimensions.
Four.
Three.
There are only four different configurations.
Ignoring rotations, there are 3 distinct solutions.
4
Four.
Three.
2 prisms
There are only four different configurations.
Well, honey, if the height is 4 cubes, that leaves you with 12 cubes to work with for the base. You can arrange those 12 cubes in various ways to form different rectangular prisms. So, technically speaking, there are multiple rectangular prisms you can create with 48 cubes and a height of 4 cubes.
Ignoring rotations, there are 3 distinct solutions.
Just one, although the orientation of the prism might vary.
6 i think
3
4
To determine how many rectangular prisms can be formed from 12 unit cubes, we must consider the possible dimensions (length, width, height) that multiply to 12. The factors of 12 give us several combinations, such as 1x1x12, 1x2x6, 1x3x4, and 2x2x3. Therefore, there are multiple distinct rectangular prisms that can be created using 12 unit cubes, depending on how we group the cubes into different dimensions.
To determine how many rectangular prisms can be made with 4 unit cubes, we need to consider the possible dimensions. The dimensions must be whole numbers that multiply to 4. The valid combinations are (1, 1, 4), (1, 2, 2), and their permutations. Thus, there are a total of 3 distinct rectangular prisms: one with dimensions 1x1x4, and one with dimensions 1x2x2.