2.5
Heat required for this transition is given as the the sum of three heatsheat required for heating the ice from -5 degree Celsius +latent heat(conversion of ice at zero degree to water at zero degrees)+heat required to heat the water from 0 to 5 degree CelsiusHeating of ice=m x s x delta T,where m is the mass ,s is the specific heat of ice=200x0.5x5=500calmelting of ice=mxlatent heat=200x80=16,000calHeating of water=m x s x delta T,where m is the mass ,s is the specific heat of water =200x1x5=1000calTotal heat required=500+16,000+1000=17,500 cal
A pound
It is 0.25 pound.
question makes no sense.....
It takes approximately 970 BTUs to vaporize one pound of water. Therefore, for 5 pounds of water, it would require 4850 BTUs to vaporize all of it.
The heat required to vaporize 500 grams of ice at its freezing point is the sum of the heat required to raise the temperature of the ice to its melting point, the heat of fusion to melt the ice, the heat required to raise the temperature of water to its boiling point, and finally the heat of vaporization to vaporize the water. The specific heat capacity of ice, heat of fusion of ice, specific heat capacity of water, and heat of vaporization of water are all needed to perform the calculations.
1650kj
9460 kJ
9460 kJ
The heat of vaporization of gold is 158 kJ/kg. To find the total energy required to vaporize 2 kg of gold, you can use the equation: Energy = mass * heat of vaporization. Substitute the values to get: Energy = 2 kg * 158 kJ/kg = 316 kJ. Therefore, 316 kJ of energy is required to vaporize 2 kg of gold.
The energy required to vaporize 1.5 kg of aluminum can be calculated using the formula: energy = mass * heat of vaporization. The heat of vaporization for aluminum is around 10,000 J/g. So, the energy required would be 1.5 kg * 10,000 J/g = 15,000,000 J or 15,000 kJ.
The heat of vaporization of ethanol is approximately 840 kJ/kg. To find the total heat required to vaporize 1.25 kg of ethanol, you can multiply the mass by the heat of vaporization: 1.25 kg * 840 kJ/kg = 1050 kJ.
The energy required to vaporize water at 100°C is known as the latent heat of vaporization, which is 2260 kJ/kg. Therefore, to vaporize 2kg of water at 100°C, the energy required would be 2260 kJ/kg x 2kg = 4520 kJ.
To calculate the energy required to heat and vaporize the ice, you need to consider the heat needed for each step: Heat the ice from -35°C to 0°C (specific heat of ice). Melt the ice at 0°C (heat of fusion). Heat the water at 0°C to 100°C (specific heat of water). Vaporize the water at 100°C (heat of vaporization). Heat the steam from 100°C to 110°C (specific heat of steam). Adding all these energies together will give you the total energy required.
molar masse acetone: 58.08 g/mol 43.9g/58.08g/mol =0.75585mol the energy required for vaporization to a gas is... 0.75585molx29.1KJ/mol =21.995KJ
1650kj