Yes it is. The trailing zeros have no affect on the value.
Billion has 9 zeros Trillion has 12 zeros Quadrillion has 15 zeros Quintillion has 18 zeros Sextillion has 21 zeros Septillion has 24 zeros Octillion has 27 zeros Nonillion has 30 zeros Decillion has 33 zeros Undecillion has 36 zeros Duodecillion has 39 zeros Tredecillion has 42 zeros Quattuordecillion has 45 zeros Quindecillion has 48 zeros Sexdecillion has 51 zeros Septendecillion has 54 zeros Octodecillion has 57 zeros Novemdecillion has 60 zeros Vigintillion has 63 zeros Googol has 100 zeros. Centillion has 303 zeros (except in Britain, where it has 600 zeros) Googolplex has a googol of zeros
In general this question is unanswerable. However, you can consider Newton's method to make very good estimates. Equations can be very complex in that their curves have poles and zeros where you do not expect them. Consider Riemann's Zeta function Z(z) = Sum(1/n^z, n>0). It has complex zeros on the line z=1/2, but up to this date, the distribution of the zeros is not entirely known!
since there are zeros the total amount of data given is different. for example: 14+16=30 30/2= 15 with zeros: 14+16+0=30 30/3=10
crossing zeros is a completely differ thing to touching zeros
The relation of "minimum" to "phase" in a minimum phase system or filter can be seen if you plot the unwrapped phase against frequency. You can use a pole zero diagram of the system response to help do a incremental graphical plot of the frequency response and phase angle. This method helps in doing a phase plot without phase wrapping discontinuities. Put all the zeros inside the unit circle (or in left half plane in the continuous-time case) where all the poles have to be as well for system stability. Use the angles from all the poles, and the opposite of the angles from all the zeros, to a point on the unit circle to calculate phase, as that frequency response reference point moves around the unit circle. Now compare this plot with a similar plot for a pole-zero diagram with any of the zeros swapped outside the unit circle (non-minimum phase). The overall average slope of the line with all the zeros inside will be lower than the average slope of any other line representing the same LTI system response (e.g. with a zero reflected outside the unit circle). This is because the "wind ups" in phase angle are all mostly cancelled by the "wind downs" in phase angle only when both the poles and zeros are on the same side of the unit circle line. Otherwise, for each zero outside, there will be an extra "wind up" of increasing phase angle that will remain mostly uncancelled as the plot reference point "winds" around the unit circle from 0 to PI. (...or up the vertical axis in the continuous-time case.) This arrangement, all the zeros inside the unit circle, thus corresponds to the minimum increase in total phase, which corresponds to minimum average total phase delay, which corresponds to maximum compactness in time, for any given (stable) set of poles and zeros with the exact same frequency magnitude response. Thus the relationship between "minimum" and "phase" for this particular arrangement of poles and zeros.
By adding poles and zeros to the transfer function of a system we can affect its root locus and also the stability. If we add a valid zero to the T.F. it will shift the root locus towards left side of the s-plane and thus the stability increases. And if we add a valid pole reverse process of that of adding zero occurs... Ashish Sharma Astt. Professor
Root locus
Like in modems, you make digital zeros one frequency and digital ones another frequency.
poles are the plot of the transfer function of a system on the left side of the origin, in s-plane. zeroes are the right side plot. poles and zeroes specifies the absolute stability of the system.. they also gives the observability and controllability of the system..
Yes it is. The trailing zeros have no affect on the value.
L and C
The network function h(s) is actually the ratio of two polynomials functions i.e s(a) /s(b),The roots of the s(a) function are called zeros and the roots of the s(b) function are called poles.
3
Gazilion isn't a real number, however this might help :) Billion has 9 zeros Trillion has 12 zeros Quadrillion has 15 zeros Quintillion has 18 zeros Sextillion has 21 zeros Septillion has 24 zeros Octillion has 27 zeros Nonillion has 30 zeros Decillion has 33 zeros Undecillion has 36 zeros Duodecillion has 39 zeros Tredecillion has 42 zeros Quattuordecillion has 45 zeros Quindecillion has 48 zeros Sexdecillion has 51 zeros Septendecillion has 54 zeros Octodecillion has 57 zeros Novemdecillion has 60 zeros Vigintillion has 63 zeros Googol has 100 zeros. Centillion has 303 zeros ( in Britain, it has 600 zeros) Googolplex has a googol of zeros Imagine trying to write them out...
Billion has 9 zeros Trillion has 12 zeros Quadrillion has 15 zeros Quintillion has 18 zeros Sextillion has 21 zeros Septillion has 24 zeros Octillion has 27 zeros Nonillion has 30 zeros Decillion has 33 zeros Undecillion has 36 zeros Duodecillion has 39 zeros Tredecillion has 42 zeros Quattuordecillion has 45 zeros Quindecillion has 48 zeros Sexdecillion has 51 zeros Septendecillion has 54 zeros Octodecillion has 57 zeros Novemdecillion has 60 zeros Vigintillion has 63 zeros Googol has 100 zeros. Centillion has 303 zeros (except in Britain, where it has 600 zeros) Googolplex has a googol of zeros
12 zeros.12 zeros.12 zeros.12 zeros.