answersLogoWhite

0

Explanation:

The difference of squares identity can be written:

a

2

b

2

=

(

a

b

)

(

a

b

)

The difference of cubes identity can be written:

a

3

b

3

=

(

a

b

)

(

a

2

a

b

b

2

)

The sum of cubes identity can be written:

a

3

b

3

=

(

a

b

)

(

a

2

a

b

b

2

)

So:

x

6

y

6

=

(

x

3

)

2

(

y

3

)

2

=

(

x

3

y

3

)

(

x

3

y

3

)

=

(

x

y

)

(

x

2

x

y

y

2

)

(

x

y

)

(

x

2

x

y

y

2

)

If we allow Complex coefficients, then this reduces into linear factors:

=

(

x

y

)

(

x

ω

y

)

(

x

ω

2

y

)

(

x

y

)

(

x

ω

y

)

(

x

ω

2

y

)

where

ω

=

1

2

3

2

i

=

cos

(

2

π

3

)

sin

(

2

π

3

)

i

is the primitive Complex cube root of

1

.

User Avatar

Anonymous

4y ago

What else can I help you with?